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Abstract

The dynamics and stability of a train of flexibly interconnected rigid cylinders travelling in a confined cylindrical
“tunnel” subjected to fluid dynamic forces is studied theoretically. Each cylinder, which is coupled to other cylinders
and supported by springs and dampers, has degrees of freedom in the lateral translational and rotational directions. The
kinetic, dissipation, and potential energies of the system and the generalized forces associated with the fluid dynamic
forces acting on the system, such as inviscid fluid dynamic forces, viscous frictional forces, and form drag, are obtained
first. Then the equations of motion are derived in a Lagrangian framework. The principal aim of this study is to
investigate the effect of the aerodynamic forces on the dynamics of a high-speed train running in a tunnel, or more
generally of a train-like system travelling in a coaxial cylindrical tube. The results of this study show that the system
loses stability by flutter and that viscous frictional drag has a considerable effect on stability of the system. In addition,
the mechanism of instability of the system is clarified with the aid of a study of the modal shapes and energy
considerations.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The instabilities of cylindrical structures in axial flow were studied, first theoretically and then experimentally, in the
1960s by Paidoussis (1966a, b) for systems in unconfined flow. Similar work was conducted for towed cylinders,
displaying a more intricate dynamical behaviour (Hawthorne, 1961; Paidoussis, 1968). This theory was extended,
corrected, and generalized later (Paidoussis, 1973).

Interest in the dynamical behaviour of articulated cylindrical systems in external axial flow is more recent than that of
the continuous (distributed-parameter) system. Work was done in conjunction with the dynamics of (i) fuel “‘strings” or
“stringers”’ of certain types of nuclear reactors (Paidoussis, 1976), and (ii) underwater systems towed by a submarine
(Hamy, 1971; Paidoussis, 1970, 1986).

Annular flow over structures may be seen as an intermediate situation between external and internal axial flow in or
around structures. An analytical model for very narrow annular configurations was developed by Paidoussis et al.
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(1990), adapting for a flexible cylinder Mateescu and Paidoussis’s (1985, 1987) work on the stability of rigid
centrebodies. A similar analytical model was also developed by Fujita and Shintani (2001), in the spirit of the Inada and
Hayama (1990a, b), Porcher and de Langre (1997), and Fujita et al. (2000) models for rigid bodies in annular flow; the
main findings in the former have thereby been reconfirmed in the latter studies.

Some attempts have been made in the past to analyse the dynamics of train-like systems in fluids. Incompressible
inviscid slender-body theory was used to determine the flow about a slender body of revolution travelling in a tube
(Goodman, 1967; Goodman and Lehman, 1968; Wang, 1969). The dynamical stability of underwater transportation
systems in unconfined space was studied by Paidoussis (1986). Aeroelastic stability of an Euler—Bernoulli
beam travelling in a tunnel lined with Helmholtz resonators was studied by Sugimoto (1996). The aerodynamically
excited vibration of coupled rigid bodies in a tunnel due to leakage flow was recently studied theoretically
and experimentally by Tanaka et al. (1999, 2001). The interested reader is referred to Paidoussis (1998, 2003) for
additional references.

The configurations in the above studies are considered to be too simple to properly model the structure of actual
above-ground trains. Hence, the present work employs a more realistic model of the train structure, yet simple enough
for examining with ease the fluid—train interactions in a tunnel. That is, this work develops a general approach for the
study of the dynamics of trains and train-like systems of flexibly interconnected rigid cylinders with elastic supports
subjected to fluid dynamic forces and moving in a tunnel. Moreover, the mechanism of instability of the system is
clarified with the aid of the computed modal shapes and energy considerations, i.e. by examining the work done by the
fluid on the system.

2. Theoretical model of the dynamics
2.1. Description of the system and assumptions

In order to achieve a description of the overall motion of a train passing through a tunnel, a large number of
simplifying idealizations have to be introduced. Simulation of translational and rotational motions of train
dynamics commonly includes seventeen and more degrees of freedom for each car and interaction between
wheels and rails (Miyamoto, 1994). Since the main concern of the present study is to examine the effect of the
aerodynamic forces on trains and train-like articulated systems, the simplest approach has been adopted to model the
structure of bogies. A vehicle with two bogies is simplified to a cylindrical body supported only on two sets of
translational springs and dampers, i.e. the bogies are modelled by springs and dampers. These cylindrical cars are
coupled by springs and dampers and they can perform translational and rotational oscillatory motions in a cylindrical
duct. It is assumed that there is no slip between the wheels and the rails in the lateral direction. With this
assumption, this approximation of the rails’ reaction against the lateral wheel motion by a spring-dashpot element is
fully justified. It should be mentioned, however, that only the onset of the train instability can be analysed under this
assumption. Moreover, the system is modelled with the aid of certain additional assumptions, which are presented in
the following.

The system under consideration is shown in Fig. 1. It consists of N rigid cylindrical cars that can only perform lateral
translational y*(¢) and yawing o(¢) oscillatory motions of small amplitude in the cylindrical duct. Each car is attached to
the duct (effectively to the rails or the “ground”) via two sets of translational springs and dampers (k/, kp, ¢r, and cs;
“f” for front, “b” for back). Rotational and translational springs and dampers are also considered interconnecting the
cars (ky, ky, ¢y, and ¢,). The leading and trailing cars comprise streamlined ends. U is the flow velocity in the space
between the sides of the train and the tunnel in the train coordinate system. It is assumed that the annular flow is not
disturbed by the existence of the springs and dampers. The following assumptions are also made: (a) the fluid is
incompressible and of uniform density; (b) no local separation of the flow takes place; and (c) boundary layer
development on the tunnel walls is ignored.

The forces associated with the structure itself are taken into account in the kinetic, dissipation, and potential
energies of the system. Concerning the fluid forces, they could in principle be determined by an appropriate
solution of the Navier—Stokes equations. This will not be attempted here; instead, the fluid forces are
determined essentially by superposition: inviscid and viscous forces are determined separately, based on
Paidoussis’s work. This has been shown to be quite acceptable (Paidoussis, 1973, 1986), even for more complex
systems (Paidoussis, 1979). The hydrodynamic forces are incorporated partly in the kinetic energy and partly as
generalized forces.

To obtain the equations of motion by application of the Lagrange equations, we now proceed to formulate the
kinetic, dissipation, and potential energies of the system and the generalized forces.
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Fig. 1. Geometry of (a) a vehicle and a simplified cylindrical car, (b) N interconnected rigid cylindrical cars, and (c) the jth oscillating
cylindrical car in the cylindrical duct. The variables with an asterisk are dimensional quantities.

2.2. Kinetic, dissipation, and potential energies of the structure
The kinetic energy of the jth car, T, is
Ty =m0 +3/58,(0°, M
where m; is the mass of the jth car and J,; is its mass-moment of inertia about the centre of mass.
The dissipation energy of the jth car, Dy, is
Dy = je5(7 — BLsy) + 5ew (0 + Blig)” + a3y — 85-1)° + 3ol 0 — [ig) — Gy + [_y85-0))

+ e G — 8) + eyt {0001 — b)) — O + ljd‘j)}zv 2
where f is the displacement coefficient for the supporting spring from the centre of the car as shown in Fig. 1(a) and l;.‘ is
the half length of the jth car.

Finally, the potential energy of the jth car, Vy;, is
Vy =Skl — BLio)* + Sk + Bliog)” + k(o5 — 05-1) + kg0 — Loy — 0y + 1050
+ o1 (a1 — ) + Moy (0541 — Ly y05a1) — 0 + o)) 3)
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2.3. Kinetic energy of the fluid

The conservative inviscid part of the fluid dynamic forces can be included in the total kinetic energy of the system.
Lighthill’s (1960) work, which is essentially an application of slender-body theory, is adopted. By this theory, the
normal flow velocity at any point ¢ of the jth car is calculated.

We describe the coupled car system subjected to external axial flow as ‘‘straight” when it is stationary along
the x-axis, such that no resultant normal force acts on its cross-section. Then, as shown in Fig. 2, we suppose that the
system has a displacement y*(x, f) from the straight position in the y-direction. We isolate an element of a car (say,
the jth one) as in Fig. 2, and then, by slender-body theory, the transverse flow velocity may be regarded as being
composed of (a) a component associated with the steady flow around the straight body, in which case the flow velocity
is Ucoso; >~ U and (b) the reversed flow velocity due to the displacement y;*(x, t). Hence, the relative fluid-body velocity
in the direction normal to the element is vg;(x,?) = (ay;‘/at) cosa; + Usina;. Note that (ay_;‘/@x) = ;. For small o,
coso; 2~ 1, sinoy > tano; = ay;f/@x*; therefore,

b0 =2 4 U (@
The lateral displacement of the element of the jth car, y7, is given by
Vi(t) = Y (0) + Eroy(0), ©)
where &* is the local coordinate on the jth car, which is related to the x coordinate by
J-1
Y=Y AL =L ©
k=1

where L} = 225;11 Iy + I is the middle point of the jth car. Then, the lateral velocity of the fluid on the inclined jth car
moving laterally is given by

0g(E%) = J(0) = J0) + E3(0) + Usy (o). %)

The kinetic energy of the lateral fluid flow around the jth car is
I
1= [ e, ®)

where M = ypA is the virtual mass of the fluid, p is the fluid density, 4 is the cross-sectional area of the car, and
1 = (R + a?)/(R** — %), where a is the radius of the cylindrical car and R* the tunnel radius, is related to confinement
by the tunnel. Substituting Eq. (7) into Eq. (8), one obtains

Ty = ap AL (372 5(0)° + (75D + Uni(1)*). ©)
2.4. The generalized forces on a middle (jth) car
Next, the generalized forces will be obtained. Forces other than the conservative inviscid fluid dynamic forces acting

on the system are shown in Fig. 3: viscous forces, pressure gradient forces, nonconservative inviscid forces, and form
drag. Recall that the conservative component of the inviscid forces has been expressed as a kinetic energy equation (9).

v

Fig. 2. Calculation of the relative fluid-body velocity in the normal direction of the jth cylindrical car.
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Fig. 3. Forces acting on cylindrical cars and on elements d¢ of the 1st, jth, and Nth cylindrical cars.

Fig. 4. Calculation of the angle of incidence 7 of the cylindrical car, i = i} + 7.

Apart from the leading (j = 1) and trailing (j = N) cars, two aerodynamic forces (other than the inviscid ones) act on
the middle cars (j = 2,..., N): viscous and pressure gradient forces, as shown in Fig. 3.

The viscous forces per unit length of the jth car in the normal and longitudinal directions Fy; and F; are as given by
Taylor (1952):

Fy; =pD*UX(Cysini + Cpysin’i), Fr; = pD*U*Crcosi, (10)

where i = tan~!(0y* /0x*) + tan~'{(dy* /0r)/ U} is the angle of inclination of the car to the flow, as shown in Fig. 4; D* is
the car diameter, Cy and Cr are the frictional drag coefficients in the normal and tangential directions, respectively,
and Cp, is the form drag coefficient. For small 0y*/0x* and (0y*/0¢)/ U, Eq. (10) may be written as

ot ox* 2 ot

where the second term in Fy represents a linearization of the quadratic viscous force at zero flow velocity,
1D Cpyl0y; /01|(8y; /O1), in which the drag coefficient represents Cp = Cp, [0y} /01].
The pressure gradient forces in the x and y directions acting on the jth car equipped with hoods are given by

oy; oyr 1 oyr 1
Fy =—pD*UcN(ﬁ+ U yf) +pD*Cp (i) Fiy=5pD"UCr, (11)

" d " d
Fpuy = =20 A(1 — g)ﬁ, Fppy = =21 A(1 — a)dfiuj, (12)

where ¢ is the ratio of cross-sectional area of the hood to that of the car. The pressure gradient distribution may be
written as

dp 1 , . (D* paU>Cr
A-E=—-pD'UCr(= ) = - =L 13
dx 2# T(DZ) o (13)

where D}, = 2(R* — a) is the hydraulic diameter and r, = (R* — a)/a is the ratio of the gap to the car radius.
The virtual work associated with the virtual displacement 6 ; on the jth car is given by

;
Wy = [Py + P00+ & 20)dE + oW, (14)

Substituting Eqs. (11)-(13) into Eq. (14), we obtain the generalized forces O,

,; and Q,; on the jth car, respectively,
associated with translational and rotational motions:

W,
OV

chj = d 2

= —pD*(UCy + Cp):35(1) + 2{(8 Y

d 1
§*+*PD*U2+(CT— CN)} + [oy(1), (15)
02;=0
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oW;
Oy = ’

00 ay;,=0

1 .
= —3pD"(UCy + Cp)l (1), (16)

2.5. Additional generalized forces on the leading (1st) and trailing (Nth) cars

For the first and Nth cars, in addition to the forces already formulated for any ““middle car,” nonconservative inviscid
forces, F, and F, (“n” for nose, “¢” for tail), and a form drag F act on the leading (j = 1) and trailing (j = N) cars,
respectively, as shown in Fig. 3.

If both ends of the system were supported, the summation of expression (9) over all the cars from j = 1 to N would
represent the whole of the inviscid component of the fluid dynamic forces. However, the present system of the train is
nonconservative, and hence there will generally be work done at the free end of the system by the nonconservative
lateral inviscid forces, F, and F; (Hawthorne, 1961; Paidoussis, 1966a).

These nonconservative inviscid forces acting on the nose and tail of the system, F,, and F,, may be written as

) ) d oy
Fp=—(—f)pAU Uiy . Fi=—(—f)ypAU Wy |y D . (17)
ot Ox* ot Ox*

where £, and f, are parameters that are equal to or less than unity, which take into account loss in lateral momentum
flux due to the shape of the free end; for an ideally streamlined end, f,, — 1 or f, — 1 (Paidoussis, 1966a, 1973).
The form drag of the trailing car, F}, associated with separation of the flow is given by

Fy =D UCy, (18)

where C, is the base drag coefficient.
The virtual work associated with the first car 6 W will therefore have the additional term

OW = Fpoy%(t) — Fulido (1) (19)
Hence, the additional generalized forces Q) and Q,; on the first car are
;0w . .
OQper = y*' =Fy = —y(1 = /,)pAUL () — [ian (0) + U (1)}, (20)
cl 160 =0
O = 7 = —Fuly = x(1 = f,)p AUl (1) = [160(2) + Uen (1)} 2n
0y5 =0

The virtual work associated with the last car 6 W will have the additional term

Wy = {Fi+ Fyan(D}0(in (1) + Ly (2). (22)
Therefore, the additional generalized forces Q/yc,V and Q) on the last car are
, oW,
Oy = 5—*N =F,+ Fpon(?)
VeN dony=0
= — 2(1 = f)p AU (1) + [yan (D) + Uon (D)} + 3pD* U Croy (1), (23)
, oW’y N
O = Soy 0 = {F; + FbO!N(t)}lN
= [—1(1 = f)pAUG N (D) + Iyan (D) + Uay (1)} + 3p D> U Chan (0] - 24)

2.6. The equations of motion

The total kinetic energy of the system, T, is glven by T =T+ T/, where Ty = Z 1 Tgand Ty = Z i1 Ty are given
by Egs. (1) and (9), respectively. Similarly, D = Z \Dgand V = Z V. Egs. (1)~ (3) (9), and (15)— (24) while taking
the summation over j into the account, are substltuted into the Lagrange equations

d /or oT oD oV
dt \9¢; O0q; 0q; 0q;

i i i

=0, ql:y:;: ¢p=0, j=12,...,N,
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which yields the equations of motion. Introducing the dimensionless quantities

ko mgy
x=x%/a, y=y"/a, /a, /a , T Hmoa’ u Mkoa’

moa My, - kyj Ky
=Q — k=" ky=——,
@ k() # mgy v k() ’ Y azko
Cyj Caj my
= j = C PR
o Vkomya b = a>komod' ¢ b koa

into the equations of motion, where kj is the reference coefficient of translational spring between the cylinders and the
duct, my the mass of cylinder per unit length, and M the virtual mass of the fluid per unit length of the cylinder, we
obtain the dimensionless equations of motion for constant frictional viscous forces along the train:

2

d dv.
21+ y (r )+5]1 a1 — f ) dyélr(T) Ly yfgrl(f)
2ul dy, dy,.
+ {Cﬁ + ij + é‘ﬂ/ + Cni—H + ]( Cy + )} yj(f) Cr[/'+1 y](;:l(T)
+ ol — f Ju yCN( L al(r) — Ly j—ldaj&r](r)
do () daoyy1(7)

+ {_ﬁc/’/ + ﬁCb}' - Cn}' + 4’11/'+1 + 2/{#”}1 d + Q71]+llj+1 dt

X doy(t) - _ _ _
+ o u(l _ft)lNu% — ko1 (1) + (kg + Ky + kyj + Kyje1)y(7)
— ki 1V 1 (D) + (1 — oo (2) — Koyl 105-1(x)

+1 |:( ﬁkf]‘f'ﬁkbj_k +k;1/+|)_—{< )CT—CN}:|O(]'(‘C)

+ krz/+llj+l°‘/+l(f) + 5]Nﬂ{7(1 —f)- _}” an(r) =0, (25)

1 5o d%o(x) dy,,(t) dy,_,(1)
2 _ 2 J —Sayu(l = fF cl ¢g—1
l{ MR I-’} e T LT

Ay (1)
~ Lyl
2 dOCl(T)
dc

yc,(f)

+ (=B + Bl — Ly + Cyjr1) — 2yuu}l;
da] 1(1:)

T L I AL U BT o L G SR

2ul? d
+{(ﬁzc,,-+ﬁ2cbj+C,U~+c,,j+1)l_?+£yj+¢y,+1+ ey + )} %(1)
d d
e+ Lyl D i = )R D 4 Fyy

+ (_ﬁk/] + ﬂkbj krz/ + k,Z,H)lqu(‘L') ry+llj}’q+1('f) S yp(l fn)ll“ a1(1)
+ (=koj + kyli—117)0-1 (x) + {(Bkyy + By + Koy + kq/+1)l_,- + Ky + ko1 — 2ypulju* Yoy (z)

_ — X 2C
o+ (Ko + Ryl (2) + ijM{X(l —f)- Tb}zw%w(r) =0, 26)
forj=1to N.

The dimensionless linearized equations of motion are rewritten in matrix form

{3} i} + ) - o e
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where [M] is the mass, [C] the damping, and [K] the stiffness matrix; {y|a}T = {p, 01,5, %2, ..., Yy, on} " is the vector of
the generalized coordinates. Solutions are then sought of the form

{g} = {g} exp(iot) = {g} exp(4?); (28)

substituting into the previous equation we obtain

(U= [YDig;} = {0}, (29)

in which /1 = iw; nontrivial solutions are obtained when det(4[I] — [Y]) = 0, which gives 2N eigenvalues of the matrix
[Y], 4;. The eigenvalues 4; of the system, which are generally complex, permit the assessment of (linear) stability for each
set of system parameters. For a stable system, the /; are either real and negative or complex conjugate pairs with
negative real parts. The corresponding eigenvectors are {¢;}.

Critical values of any given system parameter, in our case the flow velocity u, are associated with the state of neutral
stability of the system, where the eigenvalues of the linearized system contain a purely imaginary pair or a single zero
value. When the critical values are surpassed, the system becomes unstable.

3. Conversion of the discrete system into a continuous one, and comparison with previous work
3.1. Conversion of the discrete model into a continuous Timoshenko-beam model

The relationship for stiffness of the discrete and continuous systems is given next. The moment and shear forces
acting on an element of the continuous model are given by

m="" 0=raGy.

r

where p, is the radius of curvature, 4 the cross-sectional area, £ Young’s modulus, / the second moment of the cross-
sectional area, and k'G the effective shear modulus. Those of the discrete model are

M=ka, O=klé,
where [7(= 2[%) is the length of each car. By letting the moment and shear forces of the continuous system be equal those
of the discrete one, we obtain

_El _EI _KAG
e LTI

p (30)
Accordingly, the rotational and translational springs, k., and k,, interconnecting the cars are related to the flexural and
shear rigidity of the continuous system by Egs. (30).

Next, based on these relationships, we convert the present discrete system of the train of cars into a continuous
system. Initially, for the sake of clarity, the dimensionless equations of motion of the train, Egs. (25) and (26), are
simplified by (i) omitting all the (mechanical) dampers, (ii) omitting the terms for the leading (j = 1) and trailing (j = N)
cars for the infinite-length system, and (iii) letting k= kpj = 0, kyy = kyji1 = kyy» koj = koj1 = kyp and [y = [; =
i1 = I in the dimensionless equations of motion for the jth car. The simplified equations are given by

i) — ey (0751 (0) = 20750 + ¥y (O} + Ky o1 (1) — 21 (1)) = O, 31)

e (0) = kol (71 () = ¥y (0) + (s + kg1 (8) = 2050 + 71 (0} = 0. (32)

Introducing difference equations,

2
%_y(j+l — Vej-1 ayq'_y(y'+l _2y(;j+y(;j—l

ox 2r Toox? 2 ’

2
aOCj _ OCj-H - Otj_| 0 (Xj _ OC]'+| - ZOCj + (xj—l

ox 20 > 0x? [;‘2 ’
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and substituting the difference equations into the simplified equations of motion, and then making use of Eq. (30), we
have

KG <62y:;- aaj> oy (Enjf k/AGZf.3) 0%, K AGI (ayc,« ) R
kG A _ 0y ) =

p. \ox2 ox) a2’ J. 4J. ) ox2 Jo \ox T

Furthermore, if 12‘2 <a?, the mass-moment of inertia of a car about the centre of mass, J. can be related to the second
moment of area I as

N L@ . (ma* .
J(V. = p(,A[‘, (Z—FE) = ,DCAIC <Z) = pclc <T> = p(,lcl.

Finally, the discrete system is converted to a continuous one by letting /; — 0, y; — ¥, and o — o. This gives

aZy* du 62)/*
2OV o) Oy
a (ax2 6x) o (33)
0% oy* %
2 2.2
i o _a ) =22 4
o + ajx (ax ot_,) e 34)

where the following abbreviations have been introduced:

/
E:ag, k—Gza%, é:xz. (395
p p 1
Eqgs. (33) and (34) are in the form of the transverse and rotational direction equations of motion, respectively, for a
continuous Timoshenko beam (Crandall et al., 1968). Hence, it has been demonstrated that the present model of the
train of cars can be considered as a lumped-parameter Timoshenko-beam (LTB) model.

A significant feature of this system of flexibly interconnected cars is that, unlike a Timoshenko beam in which the
flexural and shear rigidities are interrelated in terms of the material properties, in this case flexural and shear rigidities
are related to different sets of springs; hence, by altering the values of these springs, the equivalent Timoshenko model
can be made to approach the Euler—Bernoulli model (instead of doing so by slenderness considerations).

3.2. Comparisons with previous work for the continuous Euler—Bernoulli beam

Here, in order to obtain the equivalent continuous Euler—Bernoulli beam system, the Timoshenko beam
effects of rotational inertia and shear deformation will be neglected. Neglecting the rotational inertia effect
implies that the mass-moment of inertia is set to zero (J/ — 0). To neglect the shear deformation effect, the translational
springs interconnecting the cars are given very large values (i.e. k, — 00), so that the cars cannot undergo lateral
translational motion. In fact, letting J/ — 0 and k, — oo (i.e. G — oo, see Eq. (30)) in the Timoshenko equation
(Thomson, 1993),

oty 0%y EIm\ % Jm d*y J &p EI &
El — S \|J+—= =+ = Nt ——=5—7—==> 36
o T "o ( kAG) avor Tragar P T iGar T kagax (36)
we obtain the Euler—Bernoulli equation
oty &y
EI@ + mW = p(x, 1). 37

In addition, we employ the relation k, = EI/I% derived in Section 3.1. We undertake a comparison between the present
model and the pinned—pinned continuous Euler—Bernoulli beam, because a certain amount of work for pinned—pinned
continuous systems has been studied in the past. The values of the variables in the present model are chosen the same as
in the previous work in order to reduce it to the equivalent continuous Euler—Bernoulli beam model.

The dynamical behaviour of the articulated system (N = 5) and of the continuous system with increasing flow
velocity is shown in Fig. 5. A set of parameters for the articulated system in Fig. 5 is given in Table 1. The results of the
continuous system are from Paidoussis (1973). The real and imaginary parts of the lowest two eigenvalues of the system,
Re(4) and Im(A), which are proportional to the damping and frequency of the oscillation, respectively, are plotted in the
form of an Argand diagram. With increasing flow velocity, starting from 0 m/s, free oscillations of the first and second
modes of both systems are damped. As shown in Fig. 5, at U >~ 3.14m/s for the articulated system, and at U ~
3.27m/s for the continuous system, the frequencies of the first mode become purely real, bifurcating on the Re(4)-axis.
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The first branch of the first mode of the articulated system goes through the origin (Re(1)>0) at a U slightly higher than
U ~ 3.14m/s, indicating buckling; the same occurs for the second branch, at U ~ 5.89 m/s. Then, for a very slight
increase in U, the two branches coalesce and leave the Re(A)-axis at the point where Re(4) >0, indicating the onset of
coupled-mode flutter. On the other hand, the eigenvalues of the second modes of the discrete and the continuous
systems never take positive Re(4) values. Their behaviour demonstrates that the second mode in both systems always
remains stable. Note that the critical flow velocities of the discrete system are lower than those of the continuous one
(e.g., 3.14m/s<3.27m/s, 5.89m/s<6.55m/s, etc.). Nevertheless, although the loci of the continuous and articulated
systems display some differences in both modes, the dynamical behaviour of the articulated system is in sensibly good
agreement with that of the continuous one.

Moreover, it has been shown that the present model is in good agreement with previous results for pinned—pinned
continuous systems, which further verifies the methodology of the present model. In addition, the present Lumped-
Parameter Timoshenko Beam (LTB) model can replicate the dynamical behaviour of a continuous Euler—Bernoulli
beam under certain conditions (Sakuma, 2006). Also, because it was shown that the overall dynamical behaviour of the
lumped-parameter Euler—Bernoulli (LEB) model and that of the continuous Euler—Bernoulli model subjected to fluid
dynamic forces are similar to each other (Paidoussis, 1986), the LTB model can replicate the dynamical behaviour of the
LEB model (Sakuma, 2006).

30 T T

—-O- Continuous (1st)
—— Continuous (2nd)
—®-  Discrete(1st)

Discrete (2nd)

20

Im () (rad/s)

6.24 6.51 6.51 6.24
4—0—0—4—09
> )
» 1
5.20 4.16 3.38 3.38 4.16 5.20

Fig. 5. Argand diagram of the pinned—pinned continuous system and that of the articulated system (N = 5) with increasing flow
velocity. The loci on the Re(4)-axis are shown separately below for clarity. The results of the continuous system are from Paidoussis
(1973).

Table 1

System parameters for the pinned—pinned articulated system shown in Fig. 5

N=35 I =15 =625 (0.0625m) L=1=1,=125(0.125m)
L, =100 (1.0m) a=0.01lm R*/a = 1000

p = 1000 kg/m? Pear = 1083kg/m?3 Cy = Cy =0.0039
Cp=C,=0 fo=/f=0 kr=ky=0

ky = 1.36 Nm/rad ky =1.0 x 108 N/m Zero mechanical damping

L4 is dimensionless total length of train.
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4. Dynamics of the train system modelled as a Lumped-parameter Timoshenko Beam (LTB)

In this section, the critical flow velocities for neutral stability and corresponding frequencies associated with
instabilities of the train-like system are calculated systematically, demonstrating the effect of the various parameters on
the stability of the system. The tested dimensionless parameters are the mass ratio, number of cars or cylindrical bodies,
blockage ratio, spring coefficients, damping coefficients, frictional drag coefficients in the normal and longitudinal
directions, streamlining coefficient at the nose of the train, base drag coefficient with streamlining coefficient at the tail
of the train, zero-flow normal coefficient, and ratio of cross-sectional area of hood to that of the cars. Since the
instability appears to occur first in either the first or second modes, the conditions of stability associated only with these
two modes are considered.

For a given set of system parameters and for each mode, the values of u and Im(/) at the point of neutral stability,
where Re(4) = 0, were determined by the method given in Section 2. The flow velocity is varied up to ~ 300m/s. In
addition to the dimensionless critical flow velocities, the percentage difference between the critical flow velocity
obtained with a set of parameters and the value obtained for a set of ““standard” system parameters are given. This
enables the effect of the various system parameters on the stability of the system to be evaluated. A set of typical
parameters for an actual high-speed train is mainly employed as the ““standard,” as given in Table 2 (Fujimoto, 1999;
Manabe, 2002). In the simulations presented in the following, the percentage differences are calculated as
100(ue, — uj‘f)/uj’;’, where u., is the critical flow velocity for the particular parameters used and uiﬁ’ is that for the
“standard”, reference system.

First, to understand the typical dynamical behaviour of the system, Argand diagrams of the lowest three
dimensionless frequencies for N = 4 and 8 are given in Fig. 6(a). It is seen that small flow velocities act to damp free
oscillations of the system. As the flow velocity is increased, however, the system becomes unstable by flutter in the first
mode for N =4 at u = 9.1, and in both the first and second modes for N = 8 at u = 8.0 and 9.3, respectively, where
those loci eventually cross the Im(2)-axis. From the examples in Fig. 6(a), the typical dynamical behaviour may be
summarized as follows: small flow velocities act to damp free oscillations of the system; and then, as the flow velocity
increases, the system becomes unstable by flutter in its lower modes.

The effect of the number of cars on the dynamics is examined in more detail. The number of cars in the train is varied
from N = 4 to 16 and the results are shown in Fig. 6(b). The dimensionless critical flow velocities of the first and second
modes and the percentage differences with the ““standard” system (N = 8) are shown in the figure. As the number of
cars increases, the dimensionless critical velocities of the first and second modes decrease. Note that there are no critical
flow velocities for the second mode if N <8 (cf. Fig. 6(a)). The percentage difference between the critical velocities for
N =4 and 16 is about 28%, as shown in Fig. 6(b).

Next, the effect of the frictional drag coefficients in the normal and longitudinal directions, Cy and C7, is examined.
The ratio of the frictional drag coefficients in the normal and longitudinal directions is varied from Cy/Cr = 0.25 to
1.0. The value of Cy is fixed at 0.0126 and that of Cy is changed. Note that we obtained almost the same results if the
value of Cr was fixed and that of Cy was changed. Argand diagrams of the lowest three dimensionless frequencies for
Cn/Cr = 0.25, 0.50, 0.75, and 1.0 are illustrated in Fig. 7(a). It is shown that for all the cases considered small flow
velocities act to damp free oscillations of the system. As the flow velocity increases, however, the system becomes
unstable by flutter in all three modes for Cy/Cr=0.25, in both the first and second modes for
Cn/Cr =0.5 (1 = 8.0,u,2 =9.3), and in only the first mode for Cy/Cr = 0.75 (1,1 = 10.0). On the other hand,
no instability occurs for Cy/Cr = 1.0; cf. Paidoussis (2003, Section 8.3.3). It should be noted that Paidoussis (2003)
reviewed papers for cylinders in axial flow and suggests the range of the ratio of Cy/Cr as 0.5<Cy/Cr<1.6.

Table 2

System parameters for a finite-length train of the LTB model in a tunnel

N=38 21 (= lar) = 14.12 (25m) L, =113.0 (200m)
a=17Tm p=0.72 R'Ja=224

AjA; =02 A'JA=10 p = 1.23kg/m’

Pear = 151.6kg/m3 Cy =0.0126 Cr=2Cy =0.0252
Cp =0.0126 Cp, =0.157 f,=10

f,=038 kr =ky =353000N/m (= ko) k, = 0Nm/rad

ky =9800N/m Zero mechanical damping

Ay is cross-sectional area of a duct (tunnel).
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Fig. 6. (a) Argand diagrams for N = 4 and 8. (b) Effect of number of cars on the dynamics of the system. The percentage difference is
defined in Section 4.

However, as suggested by Ortloff and Ives (1969), Cy/Cr = 0.5 is appropriate for hydrodynamically very rough
cylinders, and a real train (with all its protrusions) must not be far off that.

The critical flow velocities and the percentage differences as Cy/Cr is varied are given in Fig. 7(b). The dimensionless
critical velocities of the first and second modes increase with increasing the C/Cr ratio. The critical velocities for the
second mode do not exist for Cy/C7>0.5, and those for the first mode do not exist for Cy/C7>0.75. In other words,
if C7 is about 30% larger than Cy (Cy/Cr<0.75 or Cr/Cy >1.3), the loci cross the Im(2)-axis, and thus, the system
becomes unstable. The system becomes more unstable as Cr becomes larger than Cpy. The percentage difference
between the critical velocities for Cy/C7 = 0.25 and 0.75 is about 50%, as shown in Fig. 7(b).

In the same manner, the other parameters are examined. The results are summarized in Table 3. The values of
“Range” in Table 3 can be either the values of the parameter or a multiplication factor, as denoted in the previous
sections, and “[none]”” means that the critical velocity does not exist at the upper-end value of the range. E.g., for u, the
range is 0.5-4.0; for kr (and k;), 0.01-3.0; for k,, k,, = 0.01-100; and for k,, k, = 0—1. From these results it is apparent
that the mass ratio, blockage ratio, spring and damping coefficients, and frictional drag coefficients have considerable
effect on the stability of the system.

The effect of varying Cy/Cr has a larger effect on the dynamics (>50%) than any of the other aerodynamic
parameters, f,, f;, Cp, Cp, and ¢ (<£25%), as shown in Table 3.

It is recalled that the stability of similar models of articulated cylinders subjected to axial flow depends strongly on
the parameter f, (Paidoussis, 1966a, 1973). The main reason why f, has a small effect here, while in Paidoussis’
work it had a large effect, is that the two systems are quite different: LTB systems are studied here, while in Paidoussis’
work it is an LEB system. An essential difference in the conditions for positive work done by the fluid on the articulated
systems of the LEB and LTB models is that for the LEB model, the motion of all the cars has to be considered
simultaneously; while for the LTB model, the motion of each car is considered separately. This may appear to be a
superficial difference; however, as will be seen in the next section, it has repercussions on the mechanisms of instability
of the two types of model.
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Fig. 7. (a) Argand diagrams for varying from Cy/Cr = 0.25 to 1.0. (b) Effect of viscous frictional drag coefficients in the normal and
longitudinal directions on the dynamics of the system. The value of Cy is fixed at 0.0126 and that of Cr is changed. The percentage
difference is defined in Section 4.

5. The mechanism of instability for the Lumped-parameter Euler—Bernoulli (LEB) and Timoshenko Beam (LTB) models

The mechanisms of instability for the LEB and LTB models and their differences are the topic of this section. As
mentioned in the Introduction, in some studies, actual train sets have been modelled as Euler—Bernoulli beams, where
rotational inertia and shear deformation are neglected. Since the vehicles of actual trains have rotational inertia and
adjacent cars can have different translational (transverse) motion, corresponding to shear deformation of a beam, both
effects need to be included in the model. Hence, it is preferable that an actual train be modelled as a Timoshenko beam.
Here, the mechanism of instability of the LEB and LTB models is clarified with the aid of the computed modal shapes
and the work done by the fluid on the system.

Although the train is best modelled as a free—free system, as considerable previous work exists for the cantilevered
system, a cantilever model will also be considered in this paper as a reference case.

The rate at which the fluid does work on the train is given by (Benjamin, 1961)

dw . . .
dt = qul + Q2q2 +- anni (38)
where ¢;(j = 1,2,...,n) are the generalized coordinates and Q; the generalized force components representing the action

of the fluid. The generalized fluid forces are given by letting all the terms related to mechanical masses, dampers, and
springs in the equations of motion be equal to zero.
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Variations in critical velocity with respect to system parameters for a finite-length train modelled as a LTB system in a tunnel

Parameter Nomenclature Range Difference (£%)
Number of cars N 4-16 —28
Mass ratio " 0.5-4.0 —91
Blockage ratio A Aq 0.001-0.7 —64
Spring coefficients Translational to wall E/’Eb 0.01-3.0 +154 [none]
Translational to cars E” 0.01-100 +28
Rotational to cars k, 0-1.0 +16 [none]
Damping coefficients Translational to wall ¢/, cp 0-80 (N's/m) +16 [none]
Tanslational to cars ¢, 0—4 x 10 (N's/m) +6 [none]
Rotational to cars ¢, 0—3 x 10* (Nms/rad) +6 [none]
Frictional drag coefficients Cn/Cr (Cy: fixed) 0.25-0.75 +50 [none]
Form drag coefficient cp (or Cp =1 —f)n/4) 0-0.1-1.0 —21 > 3 —> —11
Streamlining coefficient Front f, 0-0.91-1.0 10—>20—0
Tail f, 0-0.9-1.0 —11—- 3 - =21
Zero-flow normal coefficient Cp 1-10 +1
Ratio of cross-sectional area of hood to that of car e=A'/A 0-1.0 +25

“Range” means either the value of a parameter or the multiplication factor; “‘[none]”” means that the critical velocity does not exist at
the upper-end values of the ranges. The percentage difference is defined in Section 4.

The work done AW on the system can generally be obtained by integrating Eq. (38) over a period of oscillation, 7, as

T
AW = /0 (01 + O + -+ + 0y . (39)
5.1. LEB model

The modified equations of motion of a free—free system in unconfined space—for the case when the mass of the car,
m,, and that of fluid, m, are different, instead of m = m, = m, as in Paidoussis (1986), are given by

N - N
.. - 1 .
(me + my)sly + (me + mp) E E Ok + i(mc + my)l? E cfej

Jj=1 k=l J=1
N
+mezzc,-0,+%cN(’%) {sly+l ZL,ZL,(OH 12280 +Ulzc, }
Jj=1 Jj=1 k=1

—%cr( >U212L,9 +( —f)mU

y+12c,9 + Uby

Jj=1
(=L UG + U0 — epmy U0y + Sy 02 [cD ter (i)z} 0, =0 (40)
where s = Zj{ilcj, ey = (@4/n)Cy,cr = (4/n)Cr and ¢p = (4n)Cp and

(m, +mf)l ZC]{ZCkékm + Cj jm}{y'f'lzﬁkgk}
{ 1 Tt 1
—l—(mc—l—m/)]-?ch{ chak,ﬁ 3(,5,,,1}0 +my UP Zc,{zckék,ﬁ c,a,,,,}oj
j=1

k=1 j=1 k=1
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N il N N
. 1 .
= myUleyy = mpUP Y~ ¢y el — My U  0imci 0y —mp ULy ding;
Jj=1 k=1 = j=1
N
+ Ka Z(0j+l - ej)(éjJrl,m - jm) - Qm = 07

=

(41)
where m=1,...,N, and
o - L (ﬂ)u lop y+1§‘jc0 + 1056, + 12 o
m P N D 7 m kYVik 3°m m 2¢m m

5>

Jj=m+1

——cN( )Ucml{ <y+12ck0k> Gl +5 02129 + Uglo; H
k=1

M\ 772 2 l 2 _
+j;rl{ <D)U cjcml (0 m)} + 2CDPAU cml(eN

N
- (1 _.ft)pA Ucml{y + 1290] + UON}

On)

=1

(42)

Eq. (40) is the “y equation” and Eq. (41) is the “0 equation.” The (y,0) coordinate system of the LEB model is
illustrated in Fig. 8(a). The work done AW for the LEB (free—free) system can be written by integrating Eq. (38) over a
period of oscillation, 7, as

AW = / Qi+ Quly + Ot -+ Qi) i = AW + 3 (AW 43)
m=1

For reference, as considerable work already exists for such a system, we also consider a cantilevered (clamped—free)
system, for which y = 0, and thus, AW} = fOT 0,4, dr = 0. Then, we have

T
AW = /0 Qs + st + -+ Oyiy)dr = S AW,
m=1

By letting all the terms related to mechanical masses m, and springs K, be zero and y = 0 in Egs. (40)—(42), the work
done for all cars in the clamped—free system over a period of oscillation, 7, is given by

m—1 .
ZAWG = —I’}’lfl3{ZCm Z C]ZCk/Tékemdt+ Z mzzck/Tékg’"dt}
m=1 m=1 j=m+1 ¢

——mfl3Zcm Z 2/ 0;0
0

m=1

mdt—mel Zcm Z c,/ Qjén,dt
m=1 Jj=m+1 m= J=m+1
+my UP Zcm ck/ 00 dt + = m/UIZE / 0’ de

m=
1

e (™)ury. kz /ekemdz

m=1

2

( )Ul32cm Z o ck/ 040, dt

m=1 j=m+1 k=1
—%N(mf) Uﬂzcm Z / 0,0, di + ~ (cT—LN)( )Uzlzzcm Z c]/ 0,0, dt
= j=m+1 Jj=m+1
—qa —f,)pAUZcmZC,IZ/T(;j@mdz_ —fomU IZC,,,/ On 0, dt, (44)
m=1 Jj=1 0 m=

. . T 22 . .
where ¢, = 1 — f, is assumed. Note that we omitted terms proportional to jOT 0 dr with minus signs in Eq. (44) because
they are always negative, and thus, these terms damp out the motions
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Fig. 8. (a) The (y,0) coordinate system of a lumped parameter Euler—Bernoulli beam (LEB) model (Paidoussis, 1986). (b) Modal
shapes of the lowest three eigenmodes of the clamped—free LTB model over a period of oscillation, 1 = 0,7/4,7/2,3T/4,T (N =6,
f, =08, Cr = Cy, U=449m/s). (c) Time histories of displacement, angle, the corresponding velocities, and their products for the
trailing car, Car 6, for the clamped—free LTB model over a period of oscillation T (N =6, f, = 0.8, Cr = Cy, U = 4.49m/s).

5.2. LTB model

In the same manner as for the LEB model, the work done for the LTB model can be obtained. Using Eqgs. (25) and
(26), letting all the terms related to mechanical masses, dampers, and springs be zero, assuming
Cy = (n/4)cp, = (n/4)(1 —f,), and letting y ~ 1 and 1/r;, >~ 0 for R*>a, corresponding to an unconfined fluid around
the train, the work done for the LTB (free—free) system for the whole train over a period of oscillation, 7, is given by

) T . T 2 ul T
AW = 2#(] —jﬂ)llu/ O.Cl_).)cld‘( — ‘u(l —fn)uZ/ (le/‘,] dr + T(CT — CN)ZIJ/ OCJ')./q- dt
0 0 =1 0
T 1 T
=21 = f )l [ de =3 =S [ g @)

Note that, again, the terms of integrations of squared variables such as fOT yjff dt and fOT a'zf dt with minus signs are
omitted because these terms are always negative, and thus, correspond to a loss in energy.

5.3. Conditions for positive work done by the fluid

As shown in Eqs. (44) and (45), the expressions for the work done consist of several terms related to fluid forces. To
understand the contribution of each term to the mechanism of instability, conditions for positive work are summarized
in a table with the aid of schematic drawings of the motion of the train cars.
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We discuss the mechanism of instability considering only terms involving the flow velocity in Eqs. (44) and (49),
because we know that the system becomes unstable as the flow velocity u increases. For instance, look at the first term
of the right-hand side of Eq. (45), 2u(1 — f ) u fOT @1p,.; dr. This term involves the coefficient f,,, which is related to the
nonconservative inviscid force acting on the nose of the leading car. This term has a plus sign and is proportional to u;
moreover, f,<1.If &; and y,., have the same sign (or jOT a1y, dt>0), then this term is always positive, and the first term
on the right-hand side of Eq. (45) does work on the system.

If we let £, =f, = 1.0 in Eq. (45), only the term (2u?/n)(Cr — CN)ZI.ALIZJ- fOT a;p,; dz, related to viscous forces,
remains. This term consists of a summation for all the cars (j =1 to N) of the product of the angle o; and the
translational velocity y,;, that is

N T N

le/o g dr =Y Loiy = hofy + hoado + -+ hoyioy.
j=1 j=1

Thus, each term consists of the product of variables with the same subscript j (j = 1,..., N) and is therefore related to

the motion of one car only. If o; and y,; have the same sign (or fOT %y.;dt>0) and Cr — Cy >0 (Cy/Cr <1), then the

term with the plus sign is always positive and does work on the system. Other terms in Egs. (44) and (45) can be

considered in the same manner.

Table 4 summarizes the conditions for all the terms in Eqs. (44) and (45) for positive work done by the fluid on the
systems of the LEB and LTB models. In the columns of the table, the model considered, coefficient of term involved,
sign, flow velocity, condition for positive work, and the corresponding motion of the terms are shown. In the “Motion”
column, the schematic drawing of the motion for &; >0 and y,, >0 is given. An overbar over a term means integration
over a period of oscillation T (i.e. &y, = fOTo'qu.l dr). Let us recall that “m” represents the number of cars for
the LEB system and ““;”’ for the LTB system in Eqgs. (44) and (45), respectively. To compare the LEB and LTB models in
Table 4, the notation for the LEB model has been changed to match that of the LTB model, that is, “m” has been
replaced by “j.”

As seen in Table 4, because most terms of the LEB model consist of summations of products of angle or angular
velocities of different cars j and k (j#k), these terms are related to all cars from £ =1 to N. For example, for the

term in the first line of Table 4, Z}Lzﬁzjﬂﬁw, the motion of cars can be explained as follows. If N =3,

Z}lezzﬁlm = 0,0, + 050, + 030, <0. If 0, has a different sign from 0, and 05 (say, 0,>0, 0, <0, and 0 <0), we

have 0,0, <0 and 9391 <0. These terms satisfy the necessary condition of being negative for AW >0. On the other hand,

we also have 030,>0 at the same time; this term does not satisfy the aforementioned necessary condition of being
negative. In fact, the necessary condition of a negative sign must be satisfied after the summation over all the terms

Zjl\il Z,ICV:HITO'I- = 0,0, + M + 030, <0 has been carried out. Therefore, the motion of all the cars in the LEB model

has to be considered simultaneously. As N is increased, it becomes more complicated to examine the necessary
condition for obtaining a negative sign overall for the motion of the cars. In contrast, because all the terms in the LTB
model consist of products of quantities associated with the same car j, as seen in Table 4, examination of the necessary
condition for AW >0 for the LTB model is more straightforward. This is an essential difference between the LEB and
LTB systems. The full appreciation of the significance of these results will be gained in the next section.

6. Modal shapes

In the previous section, the conditio
ns for positive work in the LTB and LEB models were derived analytically and are listed in Table 4. In this section,
some modal shapes of the system obtained by numerical computations will be illustrated for a period of oscillation 7.
They are compared with the corresponding motions in Table 4. In addition, time histories of displacement, angle, and
the corresponding velocities, and their products for the cars of clamped—free and free—free LTB models at four different
times in a period of oscillation (t =0, T'/4, T /2, 3T /4, and T) are given.

6.1. Clamped-free system
Here, the modal shapes of the clamped—free LEB model are analysed by applying the present numerical computation

for the LTB model subject to the conditions / — 0 and k, — oo. Recall that the equations of motion of the LTB model
are identical to those of the LEB one if / — 0 and k, — oo, as shown in Section 3.2.
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Table 4
Conditions for positive work done on the systems of clamped—free LEB and free—free LTB models
Model Term Sign U Condition Motion
N N ——
s k(<j) Carj k(>j
LEB my - U > 2 0k0;<0 I S
j=1 k=j+1
" _
N j—=l —_ k(<j) Carj k(>))
+ U 222 0k0;>0
J=1k=1 + +
N5
+ U 21 6;">0 Always positive
J=
N N —— k(<j) Carj k(>))
cN — U > > 0k0;<0
Jj=1k=j+1 - B
N j=l —— k(<j) Carj k(>))
_ U Z kf)j <0
Jj=1k=1 + +
N N i—l—— k(<j) Carj k(>j)
— U Z Z k01<0
j=li=j+1 k=1 + +
N —_— k(<j) Carj kCJ)
CT — CN +2 U2 E 61(0/ >0
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The overbar means integration over the period of oscillation 7.

If CT>CN.
°If C7>Cl.

It was shown that the stability of clamped—{ree cylinders subjected to axial flow depends strongly on the parameter f,
(Paidoussis, 1966a, 1973). Thus, we shall focus on examining the modal shape associated with the nonconservative
inviscid force involving f,. The condition for positive work done by the fluid (xy .y <0) and the corresponding motion
are shown at the bottom of Table 4. Because the nonconservative inviscid force acts only on the tapered end of the
trailing car, Car N, the condition includes only the angle and the translational velocity of Car N, ay and y,y. When the
product of angle and translational velocity, ayy.y, takes a negative value over a period of oscillation, the fluid does
work on the system. It is recalled that if the stiffnesses of translational springs between cars in the LTB model are
sufficiently large, the LTB model may be considered as an LEB model, because the relative translational displacements
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between two adjacent cars become infinitesimal. In this case, we have Z]A; lcjé,« >~ y.y. Then, letting Oy = oy, the

condition of 2//\;16]‘6N<0 for the LEB model can be considered to be the same as ayy,y <0 for the LTB model.

The condition of ayy. <0 can physically be explained as follows. If the tail of the trailing car keeps a downward
slope (ax <0) and the car moves upward (. >0) at the same time, as illustrated at the bottom figure of Table 4,
the trailing car gains energy from the fluid; here “downward” and “‘upward” refer to the diagrams in the table, not to
the train itself.

Modal shapes of second-mode unstable oscillation of a train of six cars over a period of oscillation,
t=0,T/4,T/2,3T/4, T, are illustrated in Fig. 8(b); they have been obtained numerically. The dimensional flow
velocity is set at U ~ 4.49 m/s, where the second mode loses stability by flutter. The overall modal constant in Fig. 8(b)
may be considered to be a synthesis of first and second cantilever mode contributions. This motion can be called a
“dragging motion”, that is, the tangent to the free end of the model slopes backwards to the direction of motion of the
free end over the greater part of a cycle of oscillation. This dragging motion is predicted to be necessary for flutter, in
conjunction with the energy considerations just discussed.

Fig. 8(c) illustrates the time histories of displacement, angle, the corresponding velocities, and their products (axy,y
and dyy.y) for the trailing car (N = 6) of the clamped—free LTB model over a period of oscillation 7. All the
displacements and velocities tend to oscillate sinusoidally in time. However, in the bottom graph of Fig. 8(c), the
product of angle and tl‘dl’lSldthl’ldl velocity (a6),) 1s seen to be almost always negative over a period of oscillation.
Hence, the condition of ogy¢ = fo o6y dT<0 is clearly satisfied.

Note that the curve of the time history of ay,, has negative peaks in the quarter periods from 7'/4 to 7//2 and from
3T /4 to T. The absolute values of the peaks increase with increasing time because of the flutter instability, that is, the
work done by the fluid increases gradually. During these periods, as seen in Fig. 8(b), the train of cars moves from one
side to the other across the centreline. If we compare the modal shapes at t = 0 and ¢ = T in Fig. 8(b), it is seen that the
translational displacement of all the cars is amplified after a period of 7. On the other hand, the amplitude of &y, at
the bottom graph of Fig. 8(c) (dotted line) is quite small (actually, dsy. =~ 0) in comparison with that of acy . Hence,
the effect of the term dgy,, Which is proportional to U in the f, term, may be neglected.

6.2. Free—free system with elastic supports

Recall that the dynamical behaviour of the train of free—free cars with elastic supports, whose configuration
represents a simplified actual train, is given in Fig. 6(a). In this subsection, the system parameters employed are the
same as those in Table 2, except for the number of cars N and the streamlining coefficient f,. For the sake of clarity, the
number of cars is set at N = 3, because a train of three cars is the simplest system with a middle car. Because the viscous
frictional coefficients Cr and Cy have a considerable effect on the stability of the train as shown in Section 4, the
streamlining coefficients are set at f, = 1.0 (dl’ld f, = 1.0) in order to examine the viscous frictional forces only. In this
case, only the term (2uu’/m)(Cr — CN)Z i fo e ;dt remains in Eq. (45). As explained in Section 4, the system
becomes unstable by flutter for sufficiently hlgh flow velocities provided that Cr>1.3Cy, even though only the viscous
force does positive work on the system. Consequently, we shall examine the modal shape for the effect of the viscous
forces associated with Cy and Cy.

The condition for positive work done by the fluid (Z %D yq >() and the corresponding motion are shown near the
bottom of Table 4 in the row of “Cr — Cy.” As expldmed in Section 5.3, the work expression does not include the
multiplication of variables of different cars; the corresponding motion may be examined for each car. If j7; and o; have
the same sign (or fo yr a; dt>0), then the term with Cr > Cy is positive and with C7 < Cy negative; hence if C7> Cy,
the viscous forces do positive work on the system, but if Cy<Cy, they do negative work (hence they do not
contribute to instability). That evidently explains the necessary (but not sufficient) condition for instability of C7 > Cy
obtained earlier.

Modal shapes of Mode 1 over a period of oscillation are illustrated in Fig. 9(a). The dimensionless flow velocity u is
set at 10, where the first three modes have lost stability by flutter. If we examine the motion of each car, the condition of
fOT iy, dr>0 seems to be generally satisfied. To analyse the motion of the cars more clearly, time histories of
displacement, angle, the corresponding velocities, and their products for the trailing car, Car 3, of the free—free LTB
model with elastic supports over a period of oscillation 7, are shown in Fig. 9(b). All the displacements and velocities
tend to oscillate sinusoidally in time. On the other hand, in the bottom graph of Fig. 9(b), the product of angle and
trdnsldtlonal velocity (x3).3) is almost always positive over a period of oscillation. Hence, the condition of o3y, =
fo o373 dr>0 is clearly satisfied.

If we compare the modal shapes at 1 =0 and 7 in Fig. 9(a), the translational displacement of all the cars is
almost the same after a period 7. On the other hand, the amplitude of &3y oscillates symmetrically with respect
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to the zero reference line. Hence, no contribution to the work related to the d3y,; term can be expected over a period of
oscillation.

In the same manner, we can examine the amplitudes of o7, and o»y,,. Fig. 9(c) shows the time histories of the
product of the angle and the translational velocity of Cars 1-3 over a period of oscillation 7. The curve of Car 3 in
Fig. 9(c) is the same as the solid line at the bottom of Fig. 9(b). The time histories show that Cars 1 and 2 oscillate like
Car 3. These cars have the same period of oscillation, but there is a phase difference in their motions. All the curves
clearly satisfy the condition of fOT j/jjocj dz>0. Thus, it is confirmed that the frictional viscous term with Cr> Cy has a
considerable effect on the instability of the present system of a simplified model of an actual train.

7. Conclusions

The dynamical stability of a train of flexibly interconnected rigid cylindrical cars with elastic supports subjected to
fluid dynamic forces simulating motion in a tunnel has been studied theoretically. The principal aim of this study was to
investigate the dynamics of a high-speed train running in a tunnel, or more generally of a train-like articulated system
travelling in confined fluid. The system can be treated as a lumped-parameter Timoshenko-beam (LTB) model on
elastic supports, which can replicate the dynamical behaviour of an Euler—Bernoulli beam under certain conditions. The
typical dynamical behaviour of the LTB model is found to be as follows: small flow velocities act to damp free
oscillation of the system; as the flow velocity increases, the system becomes unstable by flutter in the lower modes.

The effect of varying the principal parameters on the dynamics of the train system of the LTB model was evaluated
by calculating the critical velocities and the percentage differences with respect to a set of standard parameters. It was
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Fig. 9. (a) Modal shapes of the lowest eigenmode of LTB system over a period of oscillation, t =0,7/4,T7/2,3T/4, T (N =3,f, =1,
Cy = Cr/2,u = 10). (b) Time histories of displacement, angle, the corresponding velocities, and their products for the trailing car, Car
3, of the free—free LTB model with elastic supports over a period of oscillation T (N =3, f, =1, Cy = Cr/2, u = 10). (c) Time
histories of the product of angle and translational velocity of Cars 1-3 of the free—free LTB model with elastic supports over a period of
oscillation T (N =3, f, =1, Cy = C7/2, u = 10).
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shown that, among the aerodynamic system parameters, the ratio between viscous frictional drag coefficients in the
normal and longitudinal directions, Cy/Cr, has a considerable effect on the stability of the train.

The mechanism of instability of the Lumped-parameter Timoshenko Beam (LTB) and Euler—Bernoulli Beam (LEB)
models and the differences associated with these models have been studied by examining the equations of motion, the
work done by the fluid, and the modal shapes for the two models. The conditions for positive work done by the fluid for
the LTB and LEB models were derived analytically and discussed. An essential difference in the conditions for positive
work to be done on the systems for the clamped—free LEB and free—free LTB models is the following: for the LEB
model, the motion of all the cylinders (cars) has to be considered simultaneously, because the work done for the LEB
model involves terms with products of different cylinder motions; conversely, for the LTB model, the work done by
each cylinder can be considered separately.

In Part 2 of this study (Sakuma et al., 2008) wave propagation and flow-excited vibration of the LTB model will be
studied.
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