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Abstract

The dynamics and stability of a train of flexibly interconnected rigid cylinders travelling in a confined cylindrical

‘‘tunnel’’ subjected to fluid dynamic forces is studied theoretically. Each cylinder, which is coupled to other cylinders

and supported by springs and dampers, has degrees of freedom in the lateral translational and rotational directions. The

kinetic, dissipation, and potential energies of the system and the generalized forces associated with the fluid dynamic

forces acting on the system, such as inviscid fluid dynamic forces, viscous frictional forces, and form drag, are obtained

first. Then the equations of motion are derived in a Lagrangian framework. The principal aim of this study is to

investigate the effect of the aerodynamic forces on the dynamics of a high-speed train running in a tunnel, or more

generally of a train-like system travelling in a coaxial cylindrical tube. The results of this study show that the system

loses stability by flutter and that viscous frictional drag has a considerable effect on stability of the system. In addition,

the mechanism of instability of the system is clarified with the aid of a study of the modal shapes and energy

considerations.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The instabilities of cylindrical structures in axial flow were studied, first theoretically and then experimentally, in the

1960s by Paı̈doussis (1966a, b) for systems in unconfined flow. Similar work was conducted for towed cylinders,

displaying a more intricate dynamical behaviour (Hawthorne, 1961; Paı̈doussis, 1968). This theory was extended,

corrected, and generalized later (Paı̈doussis, 1973).

Interest in the dynamical behaviour of articulated cylindrical systems in external axial flow is more recent than that of

the continuous (distributed-parameter) system. Work was done in conjunction with the dynamics of (i) fuel ‘‘strings’’ or

‘‘stringers’’ of certain types of nuclear reactors (Paı̈doussis, 1976), and (ii) underwater systems towed by a submarine

(Hamy, 1971; Paı̈doussis, 1970, 1986).

Annular flow over structures may be seen as an intermediate situation between external and internal axial flow in or

around structures. An analytical model for very narrow annular configurations was developed by Paı̈doussis et al.
e front matter r 2008 Elsevier Ltd. All rights reserved.
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(1990), adapting for a flexible cylinder Mateescu and Paı̈doussis’s (1985, 1987) work on the stability of rigid

centrebodies. A similar analytical model was also developed by Fujita and Shintani (2001), in the spirit of the Inada and

Hayama (1990a, b), Porcher and de Langre (1997), and Fujita et al. (2000) models for rigid bodies in annular flow; the

main findings in the former have thereby been reconfirmed in the latter studies.

Some attempts have been made in the past to analyse the dynamics of train-like systems in fluids. Incompressible

inviscid slender-body theory was used to determine the flow about a slender body of revolution travelling in a tube

(Goodman, 1967; Goodman and Lehman, 1968; Wang, 1969). The dynamical stability of underwater transportation

systems in unconfined space was studied by Paı̈doussis (1986). Aeroelastic stability of an Euler–Bernoulli

beam travelling in a tunnel lined with Helmholtz resonators was studied by Sugimoto (1996). The aerodynamically

excited vibration of coupled rigid bodies in a tunnel due to leakage flow was recently studied theoretically

and experimentally by Tanaka et al. (1999, 2001). The interested reader is referred to Paı̈doussis (1998, 2003) for

additional references.

The configurations in the above studies are considered to be too simple to properly model the structure of actual

above-ground trains. Hence, the present work employs a more realistic model of the train structure, yet simple enough

for examining with ease the fluid–train interactions in a tunnel. That is, this work develops a general approach for the

study of the dynamics of trains and train-like systems of flexibly interconnected rigid cylinders with elastic supports

subjected to fluid dynamic forces and moving in a tunnel. Moreover, the mechanism of instability of the system is

clarified with the aid of the computed modal shapes and energy considerations, i.e. by examining the work done by the

fluid on the system.
2. Theoretical model of the dynamics

2.1. Description of the system and assumptions

In order to achieve a description of the overall motion of a train passing through a tunnel, a large number of

simplifying idealizations have to be introduced. Simulation of translational and rotational motions of train

dynamics commonly includes seventeen and more degrees of freedom for each car and interaction between

wheels and rails (Miyamoto, 1994). Since the main concern of the present study is to examine the effect of the

aerodynamic forces on trains and train-like articulated systems, the simplest approach has been adopted to model the

structure of bogies. A vehicle with two bogies is simplified to a cylindrical body supported only on two sets of

translational springs and dampers, i.e. the bogies are modelled by springs and dampers. These cylindrical cars are

coupled by springs and dampers and they can perform translational and rotational oscillatory motions in a cylindrical

duct. It is assumed that there is no slip between the wheels and the rails in the lateral direction. With this

assumption, this approximation of the rails’ reaction against the lateral wheel motion by a spring-dashpot element is

fully justified. It should be mentioned, however, that only the onset of the train instability can be analysed under this

assumption. Moreover, the system is modelled with the aid of certain additional assumptions, which are presented in

the following.

The system under consideration is shown in Fig. 1. It consists of N rigid cylindrical cars that can only perform lateral

translational y�ðtÞ and yawing aðtÞ oscillatory motions of small amplitude in the cylindrical duct. Each car is attached to

the duct (effectively to the rails or the ‘‘ground’’) via two sets of translational springs and dampers (kf , kb, cf , and cb;

‘‘f’’ for front, ‘‘b’’ for back). Rotational and translational springs and dampers are also considered interconnecting the

cars (kZ, ka, cZ, and ca). The leading and trailing cars comprise streamlined ends. U is the flow velocity in the space

between the sides of the train and the tunnel in the train coordinate system. It is assumed that the annular flow is not

disturbed by the existence of the springs and dampers. The following assumptions are also made: (a) the fluid is

incompressible and of uniform density; (b) no local separation of the flow takes place; and (c) boundary layer

development on the tunnel walls is ignored.

The forces associated with the structure itself are taken into account in the kinetic, dissipation, and potential

energies of the system. Concerning the fluid forces, they could in principle be determined by an appropriate

solution of the Navier–Stokes equations. This will not be attempted here; instead, the fluid forces are

determined essentially by superposition: inviscid and viscous forces are determined separately, based on

Paı̈doussis’s work. This has been shown to be quite acceptable (Paı̈doussis, 1973, 1986), even for more complex

systems (Paı̈doussis, 1979). The hydrodynamic forces are incorporated partly in the kinetic energy and partly as

generalized forces.

To obtain the equations of motion by application of the Lagrange equations, we now proceed to formulate the

kinetic, dissipation, and potential energies of the system and the generalized forces.
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Fig. 1. Geometry of (a) a vehicle and a simplified cylindrical car, (b) N interconnected rigid cylindrical cars, and (c) the jth oscillating

cylindrical car in the cylindrical duct. The variables with an asterisk are dimensional quantities.
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2.2. Kinetic, dissipation, and potential energies of the structure

The kinetic energy of the jth car, Tsj , is

Tsj ¼
1
2
mj _y

�
cjðtÞ

2
þ 1

2
Jcj _ajðtÞ

2, (1)

where mj is the mass of the jth car and Jcj is its mass-moment of inertia about the centre of mass.

The dissipation energy of the jth car, Dsj , is

Dsj ¼
1
2
cfjð _y

�
cj � bl�j _ajÞ

2
þ 1

2
cbjð _y

�
cj þ bl�j _ajÞ

2
þ 1

2
cajð_aj � _aj�1Þ

2
þ 1

2
cZjfð _y

�
cj � l�j _ajÞ � ð _y

�
cj�1 þ l�j�1 _aj�1Þg

2

þ 1
2
cajþ1ð_ajþ1 � _ajÞ

2
þ 1

2
cZjþ1fð _y

�
cjþ1 � l�jþ1 _ajþ1Þ � ð _y

�
cj þ l�j _ajÞg

2, (2)

where b is the displacement coefficient for the supporting spring from the centre of the car as shown in Fig. 1(a) and l�j is

the half length of the jth car.

Finally, the potential energy of the jth car, Vsj , is

Vsj ¼
1
2
kfjðy

�
cj � bl�j ajÞ

2
þ 1

2
kbjðy

�
cj þ bl�j ajÞ

2
þ 1

2
kajðaj � aj�1Þ

2
þ 1

2
kZjfðy

�
cj � l�j ajÞ � ðy

�
cj�1 þ l�j�1aj�1Þg

2

þ 1
2
kajþ1ðajþ1 � ajÞ

2
þ 1

2
kZjþ1fðy

�
cjþ1 � l�jþ1ajþ1Þ � ðy

�
cj þ l�j ajÞg

2. (3)
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2.3. Kinetic energy of the fluid

The conservative inviscid part of the fluid dynamic forces can be included in the total kinetic energy of the system.

Lighthill’s (1960) work, which is essentially an application of slender-body theory, is adopted. By this theory, the

normal flow velocity at any point x of the jth car is calculated.

We describe the coupled car system subjected to external axial flow as ‘‘straight’’ when it is stationary along

the x-axis, such that no resultant normal force acts on its cross-section. Then, as shown in Fig. 2, we suppose that the

system has a displacement y�ðx; tÞ from the straight position in the y-direction. We isolate an element of a car (say,

the jth one) as in Fig. 2, and then, by slender-body theory, the transverse flow velocity may be regarded as being

composed of (a) a component associated with the steady flow around the straight body, in which case the flow velocity

is U cos aj ’ U and (b) the reversed flow velocity due to the displacement y�j ðx; tÞ. Hence, the relative fluid-body velocity

in the direction normal to the element is vfjðx; tÞ ¼ ðqy�j =qtÞ cos aj þU sin aj . Note that ðqy�j =qxÞ ¼ aj . For small aj ,

cos aj ’ 1, sin aj ’ tan aj ¼ qy�j =qx�; therefore,

vfjðx; tÞ ¼
qy�

qt
þU

qy�

qx�
. (4)

The lateral displacement of the element of the jth car, y�j , is given by

y�j ðtÞ ¼ y�cjðtÞ þ x�ajðtÞ, (5)

where x� is the local coordinate on the jth car, which is related to the x coordinate by

x� ¼ 2
Xj�1
k¼1

l�k þ l�j þ x� ¼ L�j þ x�, (6)

where L�j ¼ 2
Pj�1

k¼1l�k þ l�j is the middle point of the jth car. Then, the lateral velocity of the fluid on the inclined jth car

moving laterally is given by

vfjðx
�
Þ ¼ _y�j ðtÞ ¼ _y�cjðtÞ þ x� _ajðtÞ þUajðtÞ. (7)

The kinetic energy of the lateral fluid flow around the jth car is

Tfj ¼

Z l�j

�l�j

1
2
Mv2fjðx

�
Þdx�, (8)

where M ¼ wrA is the virtual mass of the fluid, r is the fluid density, A is the cross-sectional area of the car, and

w ¼ ðR�2 þ a2Þ=ðR�2 � a2Þ, where a is the radius of the cylindrical car and R� the tunnel radius, is related to confinement

by the tunnel. Substituting Eq. (7) into Eq. (8), one obtains

Tfj ¼ wrAl�j f
1
3
l�2j _ajðtÞ

2
þ ð _y�cjðtÞ þUajðtÞÞ

2
g. (9)

2.4. The generalized forces on a middle (jth) car

Next, the generalized forces will be obtained. Forces other than the conservative inviscid fluid dynamic forces acting

on the system are shown in Fig. 3: viscous forces, pressure gradient forces, nonconservative inviscid forces, and form

drag. Recall that the conservative component of the inviscid forces has been expressed as a kinetic energy equation (9).
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Fig. 2. Calculation of the relative fluid-body velocity in the normal direction of the jth cylindrical car.
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Apart from the leading (j ¼ 1) and trailing (j ¼ N) cars, two aerodynamic forces (other than the inviscid ones) act on

the middle cars (j ¼ 2; . . . ;N): viscous and pressure gradient forces, as shown in Fig. 3.

The viscous forces per unit length of the jth car in the normal and longitudinal directions FNj and FLj are as given by

Taylor (1952):

FNj ¼
1
2
rD�U2ðCN sin i þ CDpsin

2iÞ; FLj ¼
1
2
rD�U2CT cos i, (10)

where i ¼ tan�1ðqy�=qx�Þ þ tan�1fðqy�=qtÞ=Ug is the angle of inclination of the car to the flow, as shown in Fig. 4; D� is

the car diameter, CN and CT are the frictional drag coefficients in the normal and tangential directions, respectively,

and CDp is the form drag coefficient. For small qy�=qx� and ðqy�=qtÞ=U , Eq. (10) may be written as

FNj ¼
1

2
rD�UCN

qy�j

qt
þU

qy�j

qx�

� �
þ

1

2
rD�CD

qy�j

qt

� �
; FLj ¼

1

2
rD�U2CT , (11)

where the second term in FN represents a linearization of the quadratic viscous force at zero flow velocity,
1
2
rD�CDpjqy�j =qtjðqy�j =qtÞ, in which the drag coefficient represents CD ¼ CDpjqy�j =qtj.

The pressure gradient forces in the x and y directions acting on the jth car equipped with hoods are given by

Fpx;j ¼ �2l�j Að1� �Þ
dp

dx
; Fpy;j ¼ �2l�j Að1� �Þ

dp

dx
aj , (12)

where � is the ratio of cross-sectional area of the hood to that of the car. The pressure gradient distribution may be

written as

A
dp

dx
¼ �

1

2
rD�U2CT

D�

D�h

� �
¼ �

raU2CT

rh

, (13)

where D�h ¼ 2ðR� � aÞ is the hydraulic diameter and rh ¼ ðR
� � aÞ=a is the ratio of the gap to the car radius.

The virtual work associated with the virtual displacement dW j on the jth car is given by

dW j ¼

Z l�j

�l�j

ð�FNj þ FLjajðtÞÞdðy�cjðtÞ þ x�ajðtÞÞdx� þ dW pj . (14)

Substituting Eqs. (11)–(13) into Eq. (14), we obtain the generalized forces Qycj and Qaj on the jth car, respectively,

associated with translational and rotational motions:

Qycj ¼
dW j

dy�cj

�����
daj¼0

¼ �rD�ðUCN þ CDÞl
�
j _y
�
cjðtÞ þ 2 ð�� 1ÞA

dp

dx�
þ

1

2
rD�U2 þ ðCT � CN Þ

� �
þ l�j ajðtÞ, (15)
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Qaj ¼
dW j

daj

����
dy�

cj
¼0

¼ �
1

3
rD�ðUCN þ CDÞl

�3
j _ajðtÞ. (16)

2.5. Additional generalized forces on the leading (1st) and trailing (Nth) cars

For the first and Nth cars, in addition to the forces already formulated for any ‘‘middle car,’’ nonconservative inviscid

forces, Fn and Ft (‘‘n’’ for nose, ‘‘t’’ for tail), and a form drag Fb act on the leading (j ¼ 1) and trailing (j ¼ N) cars,

respectively, as shown in Fig. 3.

If both ends of the system were supported, the summation of expression (9) over all the cars from j ¼ 1 to N would

represent the whole of the inviscid component of the fluid dynamic forces. However, the present system of the train is

nonconservative, and hence there will generally be work done at the free end of the system by the nonconservative

lateral inviscid forces, Fn and Ft (Hawthorne, 1961; Paı̈doussis, 1966a).

These nonconservative inviscid forces acting on the nose and tail of the system, Fn and Ft, may be written as

Fn ¼ �ð1� f nÞwrAU
qy�1
qt
þU

qy�1
qx�

� �
; Ft ¼ �ð1� f tÞwrAU

qy�N
qt
þU

qy�N
qx�

� �
, (17)

where f n and f t are parameters that are equal to or less than unity, which take into account loss in lateral momentum

flux due to the shape of the free end; for an ideally streamlined end, f n ! 1 or f t ! 1 (Paı̈doussis, 1966a, 1973).

The form drag of the trailing car, Fb, associated with separation of the flow is given by

Fb ¼
1
2
rD�2U2Cb, (18)

where Cb is the base drag coefficient.

The virtual work associated with the first car dW 1 will therefore have the additional term

dW 0
1 ¼ Fndy�c1ðtÞ � Fnl�1da1ðtÞ. (19)

Hence, the additional generalized forces Q0yc1 and Q0a1 on the first car are

Q0yc1 ¼
dW 0

1

dy�c1

����
da1¼0

¼ Fn ¼ �wð1� f nÞrAUf _y�c1ðtÞ � l�1 _a1ðtÞ þUa1ðtÞg, (20)

Q0a1 ¼
dW 0

1

da1

����
dy�

c1
¼0

¼ �Fnl�1 ¼ wð1� f nÞrAUl�1f _y
�
c1ðtÞ � l�1 _a1ðtÞ þUa1ðtÞg. (21)

The virtual work associated with the last car dW N will have the additional term

dW 0
N ¼ fFt þ FbaN ðtÞgdðy�cN ðtÞ þ l�NaN ðtÞÞ. (22)

Therefore, the additional generalized forces Q0ycN and Q0aN on the last car are

Q0ycN ¼
dW 0

N

dy�cN

����
daN¼0

¼ Ft þ FbaN ðtÞ

¼ � wð1� f tÞrAUf _y�cN ðtÞ þ l�N _aN ðtÞ þUaN ðtÞg þ
1
2
rD2U2CbaN ðtÞ, (23)

Q0aN ¼
dW 0

N

daN

����
dy�

cN
¼0

¼ Ft þ FbaN ðtÞ
� �

l�N

¼ �wð1� f tÞrAUf _y�cN ðtÞ þ l�N _aN ðtÞ þUaN ðtÞg þ
1
2
rD2U2CbaN ðtÞ

	 

l�N . (24)

2.6. The equations of motion

The total kinetic energy of the system, T, is given by T ¼ Ts þ Tf , where Ts ¼
PN

j¼1Tsj and Tf ¼
PN

j¼1Tfj are given

by Eqs. (1) and (9), respectively. Similarly, D ¼
PN

j¼1Dsj and V ¼
PN

j¼1Vsj . Eqs. (1)–(3), (9), and (15)–(24), while taking

the summation over j into the account, are substituted into the Lagrange equations

d

dt

qT

q _qi

� �
�

qT

qqi

þ
qD

q _qi

þ
qV

qqi

¼ Qi; q1 ¼ y�cj ; q2 ¼ aj ; j ¼ 1; 2; . . . ;N,
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which yields the equations of motion. Introducing the dimensionless quantities

x ¼ x�=a; y ¼ y�=a; l ¼ l�=a; D ¼ D�=a ¼ 2; t ¼ t

ffiffiffiffiffiffiffiffiffi
k0

m0a

s
; u ¼ U

ffiffiffiffiffiffiffi
m0

k0a

r
,

o ¼ O
ffiffiffiffiffiffiffiffiffi
m0a

k0

r
; m ¼

M0

m0
; kZj ¼

kZj

k0
; kaj ¼

kaj

a2k0
,

zZj ¼
cZjffiffiffiffiffiffiffiffiffiffiffiffiffi

k0m0a
p ; zaj ¼

caj

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0m0a
p ; c ¼ CD

ffiffiffiffiffiffiffi
m0

k0a

r
,

into the equations of motion, where k0 is the reference coefficient of translational spring between the cylinders and the

duct, m0 the mass of cylinder per unit length, and M0 the virtual mass of the fluid per unit length of the cylinder, we

obtain the dimensionless equations of motion for constant frictional viscous forces along the train:

2ð1þ wmÞlj

d2ycjðtÞ

dt2
þ dj1wmð1� f nÞu

dyc1ðtÞ
dt
� zZj

dycj�1ðtÞ

dt

þ zfj þ zbj þ zZj þ zZjþ1 þ
2mlj

p
ðuCN þ cÞ

� �
dycjðtÞ

dt
� zZjþ1

dycjþ1ðtÞ

dt

þ djNwmð1� f tÞu
dycN ðtÞ

dt
� dj1wmð1� f nÞl1u

da1ðtÞ
dt
� zZj lj�1

daj�1ðtÞ
dt

þ f�bzfj þ bzbj � zZj þ zZjþ1 þ 2wmuglj

dajðtÞ
dt
þ zZjþ1ljþ1

dajþ1ðtÞ
dt

þ djNwmð1� f tÞlN u
daN ðtÞ
dt
� kZjycj�1ðtÞ þ ðkfj þ kbj þ kZj þ kZjþ1ÞycjðtÞ

� kZjþ1ycjþ1ðtÞ þ dj1wmð1� f nÞu
2a1ðtÞ � kZj lj�1aj�1ðtÞ

þ lj ð�bkfj þ bkbj � kZj þ kZjþ1Þ �
2mu2

p
1�

�� 1

rh

� �
CT � CN

� �� 

ajðtÞ

þ kZjþ1ljþ1ajþ1ðtÞ þ djNm wð1� f tÞ �
2Cb

p

� �
u2aN ðtÞ ¼ 0, (25)

2lj
1

4
þ

l2j

3
þ

1

3
wml2j

( )
d2ajðtÞ
dt2

� dj1wmð1� f nÞl1u
dyc1ðtÞ
dt
þ zZj lj

dycj�1ðtÞ

dt

þ fð�bzfj þ bzbj � zZj þ zZjþ1Þ � 2wmuglj

dycjðtÞ

dt
� zZjþ1lj

dycjþ1ðtÞ

dt

þ djNwmð1� f tÞlNu
dycN ðtÞ

dt
þ dj1wmð1� f nÞl

2
1u
da1ðtÞ
dt
þ ð�zaj þ zZj lj�1ljÞ

daj�1ðtÞ
dt

þ ðb2zfj þ b2zbj þ zZj þ zZjþ1Þl
2
j þ zaj þ zajþ1 þ

2ml3j

3p
ðuCN þ cÞ

( )
dajðtÞ
dt

þ ð�zajþ1 þ zZjþ1lj ljþ1Þ
dajþ1ðtÞ

dt
þ djNwmð1� f tÞl

2
Nu

daN ðtÞ
dt
þ kZj ljycj�1ðtÞ

þ ð�bkfj þ bkbj � kZj þ kZjþ1ÞljycjðtÞ � kZjþ1ljycjþ1ðtÞ � dj1wmð1� f nÞl1u2a1ðtÞ

þ ð�kaj þ kZj lj�1ljÞaj�1ðtÞ þ fðb
2kfj þ b2kbj þ kZj þ kZjþ1Þl

2
j þ kaj þ kajþ1 � 2wmlju

2gajðtÞ

þ ð�kajþ1 þ kZjþ1lj ljþ1Þajþ1ðtÞ þ djNm wð1� f tÞ �
2Cb

p

� �
lN u2aN ðtÞ ¼ 0, (26)

for j ¼ 1 to N.

The dimensionless linearized equations of motion are rewritten in matrix form

½M�
€y

€a

� �
þ ½C�

_y

_a

� �
þ ½K �

y

a

n o
¼ f0g, (27)
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where ½M� is the mass, ½C� the damping, and ½K� the stiffness matrix; fyjagT ¼ fy1; a1; y2; a2; . . . ; yN ; aNg
T is the vector of

the generalized coordinates. Solutions are then sought of the form

y

a

n o
¼

ȳ

ā

� �
expðiotÞ ¼

ȳ

ā

� �
expðltÞ; (28)

substituting into the previous equation we obtain

ðl½I � � ½Y �Þff̄jg ¼ f0g, (29)

in which l ¼ io; nontrivial solutions are obtained when detðl½I � � ½Y �Þ ¼ 0, which gives 2N eigenvalues of the matrix

½Y �, lj . The eigenvalues lj of the system, which are generally complex, permit the assessment of (linear) stability for each

set of system parameters. For a stable system, the lj are either real and negative or complex conjugate pairs with

negative real parts. The corresponding eigenvectors are ff̄jg.

Critical values of any given system parameter, in our case the flow velocity u, are associated with the state of neutral

stability of the system, where the eigenvalues of the linearized system contain a purely imaginary pair or a single zero

value. When the critical values are surpassed, the system becomes unstable.
3. Conversion of the discrete system into a continuous one, and comparison with previous work

3.1. Conversion of the discrete model into a continuous Timoshenko-beam model

The relationship for stiffness of the discrete and continuous systems is given next. The moment and shear forces

acting on an element of the continuous model are given by

M ¼
EI

rr

; Q ¼ k0AGf,

where rr is the radius of curvature, A the cross-sectional area, E Young’s modulus, I the second moment of the cross-

sectional area, and k0G the effective shear modulus. Those of the discrete model are

M ¼ kaa; Q ¼ kZl�cf,

where l�c ð¼ 2l�Þ is the length of each car. By letting the moment and shear forces of the continuous system be equal those

of the discrete one, we obtain

ka ¼
EI

rra
¼

EI

l�c
; kZ ¼

k0AG

l�c
. (30)

Accordingly, the rotational and translational springs, ka and kZ, interconnecting the cars are related to the flexural and

shear rigidity of the continuous system by Eqs. (30).

Next, based on these relationships, we convert the present discrete system of the train of cars into a continuous

system. Initially, for the sake of clarity, the dimensionless equations of motion of the train, Eqs. (25) and (26), are

simplified by (i) omitting all the (mechanical) dampers, (ii) omitting the terms for the leading (j ¼ 1) and trailing (j ¼ N)

cars for the infinite-length system, and (iii) letting kfj ¼ kbj ¼ 0, kZj ¼ kZjþ1 ¼ kZ, kaj ¼ kajþ1 ¼ ka, and lj�1 ¼ lj ¼

ljþ1 ¼ l in the dimensionless equations of motion for the jth car. The simplified equations are given by

mj €y
�
cjðtÞ � kZfy

�
cjþ1ðtÞ � 2y�cjðtÞ þ y�cj�1ðtÞg þ kZl�fajþ1ðtÞ � aj�1ðtÞg ¼ 0, (31)

Jc €ajðtÞ � kZl�fy�cjþ1ðtÞ � y�cj�1ðtÞg þ ð�ka þ kZl�2Þfajþ1ðtÞ � 2ajðtÞ þ aj�1ðtÞg ¼ 0. (32)

Introducing difference equations,

qycj

qx
¼

ycjþ1 � ycj�1

2l�c
;

q2ycj

qx2
¼

ycjþ1 � 2ycj þ ycj�1

l�2c

,

qaj

qx
¼

ajþ1 � aj�1

2l�c
;

q2aj

qx2
¼

ajþ1 � 2aj þ aj�1

l�2c

,
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and substituting the difference equations into the simplified equations of motion, and then making use of Eq. (30), we

have

k0G

rc

q2y�cj

qx2
�

qaj

qx

 !
¼

q2y�cj

qt2
;

EIl�c
Jc

�
k0AGl�3c

4Jc

� �
q2aj

qx2
þ

k0AGl�c
Jc

qycj

qx
� aj

� �
¼

q2aj

qt2
.

Furthermore, if l�2c 5a2, the mass-moment of inertia of a car about the centre of mass, Jc can be related to the second

moment of area I as

Jc ¼ rcAl�c
a2

4
þ

l�2c

12

� �
’ rcAl�c

a2

4

� �
¼ rcl�c

pa4

4

� �
¼ rcl�c I .

Finally, the discrete system is converted to a continuous one by letting l�c ! 0 , ycj ! y, and aj ! a. This gives

a2
1

q2y�

qx2
�

qa
qx

� �
¼

q2y�

qt2
, (33)

a2
2

q2a
qx2
þ a21k

2 qy�

qx
� aj

� �
¼

q2a
qt2

, (34)

where the following abbreviations have been introduced:

E

r
¼ a22;

k0G

r
¼ a21;

A

I
¼ k2. (35)

Eqs. (33) and (34) are in the form of the transverse and rotational direction equations of motion, respectively, for a

continuous Timoshenko beam (Crandall et al., 1968). Hence, it has been demonstrated that the present model of the

train of cars can be considered as a lumped-parameter Timoshenko-beam (LTB) model.

A significant feature of this system of flexibly interconnected cars is that, unlike a Timoshenko beam in which the

flexural and shear rigidities are interrelated in terms of the material properties, in this case flexural and shear rigidities

are related to different sets of springs; hence, by altering the values of these springs, the equivalent Timoshenko model

can be made to approach the Euler–Bernoulli model (instead of doing so by slenderness considerations).

3.2. Comparisons with previous work for the continuous Euler–Bernoulli beam

Here, in order to obtain the equivalent continuous Euler–Bernoulli beam system, the Timoshenko beam

effects of rotational inertia and shear deformation will be neglected. Neglecting the rotational inertia effect

implies that the mass-moment of inertia is set to zero (J ! 0). To neglect the shear deformation effect, the translational

springs interconnecting the cars are given very large values (i.e. kZ !1), so that the cars cannot undergo lateral

translational motion. In fact, letting J ! 0 and kZ !1 (i.e. G!1, see Eq. (30)) in the Timoshenko equation

(Thomson, 1993),

EI
q4y

qx4
þm

q2y

qt2
� J þ

EIm

kAG

� �
q4y

qx2qt2
þ

Jm

kAG

q4y

qt4
¼ pðx; tÞ þ

J

kAG

q2p

qt2
�

EI

kAG

q2p

qx2
, (36)

we obtain the Euler–Bernoulli equation

EI
q4y

qx4
þm

q2y

qt2
¼ pðx; tÞ. (37)

In addition, we employ the relation ka ¼ EI=l�c derived in Section 3.1. We undertake a comparison between the present

model and the pinned–pinned continuous Euler–Bernoulli beam, because a certain amount of work for pinned–pinned

continuous systems has been studied in the past. The values of the variables in the present model are chosen the same as

in the previous work in order to reduce it to the equivalent continuous Euler–Bernoulli beam model.

The dynamical behaviour of the articulated system (N ¼ 5) and of the continuous system with increasing flow

velocity is shown in Fig. 5. A set of parameters for the articulated system in Fig. 5 is given in Table 1. The results of the

continuous system are from Paı̈doussis (1973). The real and imaginary parts of the lowest two eigenvalues of the system,

ReðlÞ and ImðlÞ, which are proportional to the damping and frequency of the oscillation, respectively, are plotted in the

form of an Argand diagram. With increasing flow velocity, starting from 0m/s, free oscillations of the first and second

modes of both systems are damped. As shown in Fig. 5, at U ’ 3:14m=s for the articulated system, and at U ’

3:27m=s for the continuous system, the frequencies of the first mode become purely real, bifurcating on the ReðlÞ-axis.
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The first branch of the first mode of the articulated system goes through the origin ðReðlÞ40Þ at a U slightly higher than

U ’ 3:14m=s, indicating buckling; the same occurs for the second branch, at U ’ 5:89m=s. Then, for a very slight

increase in U, the two branches coalesce and leave the ReðlÞ-axis at the point where ReðlÞ40, indicating the onset of

coupled-mode flutter. On the other hand, the eigenvalues of the second modes of the discrete and the continuous

systems never take positive ReðlÞ values. Their behaviour demonstrates that the second mode in both systems always

remains stable. Note that the critical flow velocities of the discrete system are lower than those of the continuous one

(e.g., 3:14m=so3:27m=s, 5:89m=so6:55m=s, etc.). Nevertheless, although the loci of the continuous and articulated

systems display some differences in both modes, the dynamical behaviour of the articulated system is in sensibly good

agreement with that of the continuous one.

Moreover, it has been shown that the present model is in good agreement with previous results for pinned–pinned

continuous systems, which further verifies the methodology of the present model. In addition, the present Lumped-

Parameter Timoshenko Beam (LTB) model can replicate the dynamical behaviour of a continuous Euler–Bernoulli

beam under certain conditions (Sakuma, 2006). Also, because it was shown that the overall dynamical behaviour of the

lumped-parameter Euler–Bernoulli (LEB) model and that of the continuous Euler–Bernoulli model subjected to fluid

dynamic forces are similar to each other (Paı̈doussis, 1986), the LTB model can replicate the dynamical behaviour of the

LEB model (Sakuma, 2006).
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Fig. 5. Argand diagram of the pinned–pinned continuous system and that of the articulated system (N ¼ 5) with increasing flow

velocity. The loci on the Re(l)-axis are shown separately below for clarity. The results of the continuous system are from Paı̈doussis

(1973).

Table 1

System parameters for the pinned–pinned articulated system shown in Fig. 5

N ¼ 5 l1 ¼ l5 ¼ 6:25 (0.0625m) l2 ¼ l3 ¼ l4 ¼ 12:5 (0.125m)

LA ¼ 100 (1.0m) a ¼ 0:01m R�=a ¼ 1000

r ¼ 1000kg=m3 rcar ¼ 1083kg=m3 CN ¼ CT ¼ 0:0039

CD ¼ Cb ¼ 0 f n ¼ f t ¼ 0 kf ¼ kb ¼ 0

ka ¼ 1:36Nm=rad kZ ¼ 1:0� 108 N=m Zero mechanical damping

LA is dimensionless total length of train.
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4. Dynamics of the train system modelled as a Lumped-parameter Timoshenko Beam (LTB)

In this section, the critical flow velocities for neutral stability and corresponding frequencies associated with

instabilities of the train-like system are calculated systematically, demonstrating the effect of the various parameters on

the stability of the system. The tested dimensionless parameters are the mass ratio, number of cars or cylindrical bodies,

blockage ratio, spring coefficients, damping coefficients, frictional drag coefficients in the normal and longitudinal

directions, streamlining coefficient at the nose of the train, base drag coefficient with streamlining coefficient at the tail

of the train, zero-flow normal coefficient, and ratio of cross-sectional area of hood to that of the cars. Since the

instability appears to occur first in either the first or second modes, the conditions of stability associated only with these

two modes are considered.

For a given set of system parameters and for each mode, the values of u and Im(l) at the point of neutral stability,

where ReðlÞ ¼ 0, were determined by the method given in Section 2. The flow velocity is varied up to ’ 300m=s. In
addition to the dimensionless critical flow velocities, the percentage difference between the critical flow velocity

obtained with a set of parameters and the value obtained for a set of ‘‘standard’’ system parameters are given. This

enables the effect of the various system parameters on the stability of the system to be evaluated. A set of typical

parameters for an actual high-speed train is mainly employed as the ‘‘standard,’’ as given in Table 2 (Fujimoto, 1999;

Manabe, 2002). In the simulations presented in the following, the percentage differences are calculated as

100ðucr � usd
cr Þ=usd

cr , where ucr is the critical flow velocity for the particular parameters used and usd
cr is that for the

‘‘standard’’, reference system.

First, to understand the typical dynamical behaviour of the system, Argand diagrams of the lowest three

dimensionless frequencies for N ¼ 4 and 8 are given in Fig. 6(a). It is seen that small flow velocities act to damp free

oscillations of the system. As the flow velocity is increased, however, the system becomes unstable by flutter in the first

mode for N ¼ 4 at u ¼ 9:1, and in both the first and second modes for N ¼ 8 at u ¼ 8:0 and 9.3, respectively, where

those loci eventually cross the ImðlÞ-axis. From the examples in Fig. 6(a), the typical dynamical behaviour may be

summarized as follows: small flow velocities act to damp free oscillations of the system; and then, as the flow velocity

increases, the system becomes unstable by flutter in its lower modes.

The effect of the number of cars on the dynamics is examined in more detail. The number of cars in the train is varied

from N ¼ 4 to 16 and the results are shown in Fig. 6(b). The dimensionless critical flow velocities of the first and second

modes and the percentage differences with the ‘‘standard’’ system (N ¼ 8) are shown in the figure. As the number of

cars increases, the dimensionless critical velocities of the first and second modes decrease. Note that there are no critical

flow velocities for the second mode if No8 (cf. Fig. 6(a)). The percentage difference between the critical velocities for

N ¼ 4 and 16 is about 28%, as shown in Fig. 6(b).

Next, the effect of the frictional drag coefficients in the normal and longitudinal directions, CN and CT , is examined.

The ratio of the frictional drag coefficients in the normal and longitudinal directions is varied from CN=CT ¼ 0:25 to

1.0. The value of CN is fixed at 0.0126 and that of CT is changed. Note that we obtained almost the same results if the

value of CT was fixed and that of CN was changed. Argand diagrams of the lowest three dimensionless frequencies for

CN=CT ¼ 0.25, 0.50, 0.75, and 1.0 are illustrated in Fig. 7(a). It is shown that for all the cases considered small flow

velocities act to damp free oscillations of the system. As the flow velocity increases, however, the system becomes

unstable by flutter in all three modes for CN=CT ¼ 0:25, in both the first and second modes for

CN=CT ¼ 0:5 ðucr1 ¼ 8:0; ucr2 ¼ 9:3Þ, and in only the first mode for CN=CT ¼ 0:75 ðucr1 ¼ 10:0Þ. On the other hand,

no instability occurs for CN=CT ¼ 1:0; cf. Paı̈doussis (2003, Section 8.3.3). It should be noted that Paı̈doussis (2003)

reviewed papers for cylinders in axial flow and suggests the range of the ratio of CN=CT as 0:5pCN=CTp1:6.
Table 2

System parameters for a finite-length train of the LTB model in a tunnel

N ¼ 8 2lj ð¼ lcarÞ ¼ 14:12 (25m) LA ¼ 113:0 (200m)

a ¼ 1:77m b ¼ 0:72 R�=a ¼ 2:24
A=Ad ¼ 0:2 A0=A ¼ 1:0 r ¼ 1:23 kg=m3

rcar ¼ 151:6kg=m3 CN ¼ 0:0126 CT ¼ 2CN ¼ 0:0252

CD ¼ 0:0126 Cb ¼ 0:157 f n ¼ 1:0
f t ¼ 0:8 kf ¼ kb ¼ 353 000N=m ð¼ k0Þ ka ¼ 0Nm=rad

kZ ¼ 9800N=m Zero mechanical damping

Ad is cross-sectional area of a duct (tunnel).
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However, as suggested by Ortloff and Ives (1969), CN=CT ¼ 0:5 is appropriate for hydrodynamically very rough

cylinders, and a real train (with all its protrusions) must not be far off that.

The critical flow velocities and the percentage differences as CN=CT is varied are given in Fig. 7(b). The dimensionless

critical velocities of the first and second modes increase with increasing the CN=CT ratio. The critical velocities for the

second mode do not exist for CN=CT40:5, and those for the first mode do not exist for CN=CT40:75. In other words,

if CT is about 30% larger than CN (CN=CTp0:75 or CT=CNX1:3), the loci cross the ImðlÞ-axis, and thus, the system

becomes unstable. The system becomes more unstable as CT becomes larger than CN . The percentage difference

between the critical velocities for CN=CT ¼ 0:25 and 0.75 is about 50%, as shown in Fig. 7(b).

In the same manner, the other parameters are examined. The results are summarized in Table 3. The values of

‘‘Range’’ in Table 3 can be either the values of the parameter or a multiplication factor, as denoted in the previous

sections, and ‘‘[none]’’ means that the critical velocity does not exist at the upper-end value of the range. E.g., for m, the
range is 0.5–4.0; for kf (and kb), 0:01–3:0; for kZ, kZ ¼ 0:01–100; and for ka, ka ¼ 0–1. From these results it is apparent

that the mass ratio, blockage ratio, spring and damping coefficients, and frictional drag coefficients have considerable

effect on the stability of the system.

The effect of varying CN=CT has a larger effect on the dynamics (X50%) than any of the other aerodynamic

parameters, f n, f t, Cb, CD, and � ðp25%Þ, as shown in Table 3.

It is recalled that the stability of similar models of articulated cylinders subjected to axial flow depends strongly on

the parameter f t (Paı̈doussis, 1966a, 1973). The main reason why f t has a small effect here, while in Paı̈doussis’

work it had a large effect, is that the two systems are quite different: LTB systems are studied here, while in Paı̈doussis’

work it is an LEB system. An essential difference in the conditions for positive work done by the fluid on the articulated

systems of the LEB and LTB models is that for the LEB model, the motion of all the cars has to be considered

simultaneously; while for the LTB model, the motion of each car is considered separately. This may appear to be a

superficial difference; however, as will be seen in the next section, it has repercussions on the mechanisms of instability

of the two types of model.



ARTICLE IN PRESS

0

0.32

0.34

0.36

0.38 u = 0

3rd
mode

1st
mode

CN / CT = 0.5

0

0.34

0.36

0.38

Im (�)
u = 0

1st mode

2nd
mode

3rd
mode

u = 6.6

u = 8.6 u = 9.9

CN / CT = 0.25

0
0.3

0.32

0.36

Im (�)

u = 0

1st
mode

2nd
mode

u = 10.0

u = 11.6

CN / CT = 0.75

0

0.32

0.38
Im (�)

u = 0

1st
mode

3rd mode

CN / CT = 1.0

0

5

u c
r (

D
im

en
si

on
le

ss
)

1st mode
2nd mode

-40

-20

0

40

0.5

D
if

fe
re

nc
e 

(%
)

0.32

0.3

Re (�) Re (�)

0.0005 0.001 -0.0004 -0.0002 0.0002 0.0004

u = 9.3

Im (�)

2nd
mode

0.3

u = 8.0

10

15

0.0

CN / CT

0.5 1.0

1st mode
2nd mode

20

CN / CT

3rd
mode

Re (�) Re (�)

2nd
mode

0.36

0.34

0.3
-0.001 -0.0005-0.0002-0.0004-0.0006

0.38

0.34

0.0 1.0

Fig. 7. (a) Argand diagrams for varying from CN=CT ¼ 0:25 to 1.0. (b) Effect of viscous frictional drag coefficients in the normal and

longitudinal directions on the dynamics of the system. The value of CN is fixed at 0.0126 and that of CT is changed. The percentage

difference is defined in Section 4.

Y. Sakuma et al. / Journal of Fluids and Structures 24 (2008) 932–953944
5. The mechanism of instability for the Lumped-parameter Euler–Bernoulli (LEB) and Timoshenko Beam (LTB) models

The mechanisms of instability for the LEB and LTB models and their differences are the topic of this section. As

mentioned in the Introduction, in some studies, actual train sets have been modelled as Euler–Bernoulli beams, where

rotational inertia and shear deformation are neglected. Since the vehicles of actual trains have rotational inertia and

adjacent cars can have different translational (transverse) motion, corresponding to shear deformation of a beam, both

effects need to be included in the model. Hence, it is preferable that an actual train be modelled as a Timoshenko beam.

Here, the mechanism of instability of the LEB and LTB models is clarified with the aid of the computed modal shapes

and the work done by the fluid on the system.

Although the train is best modelled as a free–free system, as considerable previous work exists for the cantilevered

system, a cantilever model will also be considered in this paper as a reference case.

The rate at which the fluid does work on the train is given by (Benjamin, 1961)

dW

dt
¼ Q1 _q1 þQ2 _q2 þ � � � þQn _qn, (38)

where qjðj ¼ 1; 2; . . . ; nÞ are the generalized coordinates and Qj the generalized force components representing the action

of the fluid. The generalized fluid forces are given by letting all the terms related to mechanical masses, dampers, and

springs in the equations of motion be equal to zero.
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Table 3

Variations in critical velocity with respect to system parameters for a finite-length train modelled as a LTB system in a tunnel

Parameter Nomenclature Range Difference ð�%Þ

Number of cars N 4–16 �28

Mass ratio m 0.5–4.0 �91

Blockage ratio A=Ad 0.001–0.7 �64

Spring coefficients Translational to wall kf ; kb 0.01–3.0 þ154 [none]

Translational to cars kZ 0.01–100 þ28

Rotational to cars ka 0–1.0 þ16 [none]

Damping coefficients Translational to wall cf ; cb 0–80 (N s/m) þ16 [none]

Tanslational to cars cZ 024� 103 (N s/m) þ6 [none]

Rotational to cars ca 023� 104 (Nms/rad) þ6 [none]

Frictional drag coefficients CN=CT (CN : fixed) 0.25–0.75 þ50 [none]

Form drag coefficient cb (or Cb ¼ ð1� f tÞp=4) 0–0.1–1.0 �21! 3!�11

Streamlining coefficient Front f n 0–0.91–1.0 10! 20! 0

Tail f t 0–0.9–1.0 �11! 3!�21

Zero-flow normal coefficient CD 1–10 þ1

Ratio of cross-sectional area of hood to that of car � ¼ A0=A 0–1.0 þ25

‘‘Range’’ means either the value of a parameter or the multiplication factor; ‘‘[none]’’ means that the critical velocity does not exist at

the upper-end values of the ranges. The percentage difference is defined in Section 4.
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The work done DW on the system can generally be obtained by integrating Eq. (38) over a period of oscillation, T, as

DW ¼

Z T

0

ðQ1 _q1 þQ2 _q2 þ � � � þQn _qnÞdt. (39)

5.1. LEB model

The modified equations of motion of a free–free system in unconfined space—for the case when the mass of the car,

mc, and that of fluid, mf , are different, instead of m ¼ mc ¼ mf as in Paı̈doussis (1986), are given by
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y1 ¼ 0, (40)

where s ¼
PN

j¼1cj , cN ¼ ð4=pÞCN ; cT ¼ ð4=pÞCT and cD ¼ ð4pÞCb and
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where m ¼ 1; . . . ;N, and
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Eq. (40) is the ‘‘y equation’’ and Eq. (41) is the ‘‘y equation.’’ The ðy; yÞ coordinate system of the LEB model is

illustrated in Fig. 8(a). The work done DW for the LEB (free–free) system can be written by integrating Eq. (38) over a

period of oscillation, T, as

DW ¼

Z T

0

ðQy _qy þQ1 _q1 þQ2 _q2 þ � � � þQN _qN Þdt ¼ DW y þ
XN

m¼1

ðDW y
mÞ. (43)

For reference, as considerable work already exists for such a system, we also consider a cantilevered (clamped–free)

system, for which y ¼ 0, and thus, DW
y
j ¼

R T

0 Qy _qy dt ¼ 0. Then, we have

DW ¼

Z T

0

ðQ1 _q1 þQ2 _q2 þ � � � þQN _qN Þdt ¼
XN

m¼1

ðDW y
mÞ.

By letting all the terms related to mechanical masses mc and springs Ka be zero and y ¼ 0 in Eqs. (40)–(42), the work

done for all cars in the clamped–free system over a period of oscillation, T, is given by
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where cb ¼ 1� f t is assumed. Note that we omitted terms proportional to
R T

0
_y
2

m dt with minus signs in Eq. (44) because

they are always negative, and thus, these terms damp out the motions.
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Fig. 8. (a) The ðy; yÞ coordinate system of a lumped parameter Euler–Bernoulli beam (LEB) model (Paı̈doussis, 1986). (b) Modal

shapes of the lowest three eigenmodes of the clamped–free LTB model over a period of oscillation, t ¼ 0;T=4;T=2; 3T=4;T (N ¼ 6,

f t ¼ 0:8, CT ¼ CN , U ¼ 4:49m=s). (c) Time histories of displacement, angle, the corresponding velocities, and their products for the

trailing car, Car 6, for the clamped–free LTB model over a period of oscillation T (N ¼ 6, f t ¼ 0:8, CT ¼ CN , U ¼ 4:49m=s).
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5.2. LTB model

In the same manner as for the LEB model, the work done for the LTB model can be obtained. Using Eqs. (25) and

(26), letting all the terms related to mechanical masses, dampers, and springs be zero, assuming

Cb ¼ ðp=4Þcb ¼ ðp=4Þð1� f tÞ, and letting w ’ 1 and 1=rh ’ 0 for R�ba, corresponding to an unconfined fluid around

the train, the work done for the LTB (free–free) system for the whole train over a period of oscillation, T, is given by

DW ¼ 2mð1� f nÞl1u

Z T

0

_a1 _yc1dt� mð1� f nÞu
2

Z T

0

a1 _yc1 dtþ
2mu2

p
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lj
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aj _ycj dt

� 2mð1� f tÞlNu

Z T

0

_aN _ycN dt�
1

2
mð1� f tÞu

2

Z T

0

aN _ycN dt. (45)

Note that, again, the terms of integrations of squared variables such as
R T

0
_y�2cj dt and

R T

0
_a2j dt with minus signs are

omitted because these terms are always negative, and thus, correspond to a loss in energy.
5.3. Conditions for positive work done by the fluid

As shown in Eqs. (44) and (45), the expressions for the work done consist of several terms related to fluid forces. To

understand the contribution of each term to the mechanism of instability, conditions for positive work are summarized

in a table with the aid of schematic drawings of the motion of the train cars.
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We discuss the mechanism of instability considering only terms involving the flow velocity in Eqs. (44) and (45),

because we know that the system becomes unstable as the flow velocity u increases. For instance, look at the first term

of the right-hand side of Eq. (45), 2mð1� f nÞl1u
R T

0
_a1 _yc1 dt. This term involves the coefficient f n, which is related to the

nonconservative inviscid force acting on the nose of the leading car. This term has a plus sign and is proportional to u;

moreover, f np1. If _a1 and _yc1 have the same sign (or
R T

0
_a1 _yc1 dt40), then this term is always positive, and the first term

on the right-hand side of Eq. (45) does work on the system.

If we let f n ¼ f t ¼ 1:0 in Eq. (45), only the term ð2mu2=pÞðCT � CN Þ
PN

j¼1lj

R T

0
aj _ycj dt, related to viscous forces,

remains. This term consists of a summation for all the cars (j ¼ 1 to N) of the product of the angle aj and the

translational velocity _ycj , that is

XN

j¼1

lj

Z T

0

aj _ycj dt ¼
XN

j¼1

ljaj _ycj ¼ l1a1 _yc1 þ l2a2 _yc2 þ � � � þ l1aN _ycN .

Thus, each term consists of the product of variables with the same subscript j (j ¼ 1; . . . ;N) and is therefore related to

the motion of one car only. If aj and _ycj have the same sign (or
R T

0 aj _yc1j dt40) and CT � CN40 (CN=CTo1), then the

term with the plus sign is always positive and does work on the system. Other terms in Eqs. (44) and (45) can be

considered in the same manner.

Table 4 summarizes the conditions for all the terms in Eqs. (44) and (45) for positive work done by the fluid on the

systems of the LEB and LTB models. In the columns of the table, the model considered, coefficient of term involved,

sign, flow velocity, condition for positive work, and the corresponding motion of the terms are shown. In the ‘‘Motion’’

column, the schematic drawing of the motion for _a140 and _yc140 is given. An overbar over a term means integration

over a period of oscillation T (i.e. _a1 _yc1 ¼
R T

0
_a1 _yc1 dt). Let us recall that ‘‘m’’ represents the number of cars for

the LEB system and ‘‘j’’ for the LTB system in Eqs. (44) and (45), respectively. To compare the LEB and LTB models in

Table 4, the notation for the LEB model has been changed to match that of the LTB model, that is, ‘‘m’’ has been

replaced by ‘‘j.’’

As seen in Table 4, because most terms of the LEB model consist of summations of products of angle or angular

velocities of different cars j and k (jak), these terms are related to all cars from k ¼ 1 to N. For example, for the

term in the first line of Table 4,
PN

j¼1

PN
k¼jþ1

_yk
_yjo0, the motion of cars can be explained as follows. If N ¼ 3,P3

j¼1

P3
k¼jþ1

_yk
_yj ¼ _y2 _y1 þ _y3 _y1 þ _y3 _y2o0. If _y1 has a different sign from _y2 and _y3 (say, _y140, _y2o0, and _y3o0), we

have _y2 _y1o0 and _y3 _y1o0. These terms satisfy the necessary condition of being negative for DW40. On the other hand,

we also have _y3 _y240 at the same time; this term does not satisfy the aforementioned necessary condition of being

negative. In fact, the necessary condition of a negative sign must be satisfied after the summation over all the termsPN
j¼1

PN
k¼jþ1

_yk
_yj ¼

_y2 _y1 þ _y3 _y1 þ _y3 _y2o0 has been carried out. Therefore, the motion of all the cars in the LEB model

has to be considered simultaneously. As N is increased, it becomes more complicated to examine the necessary

condition for obtaining a negative sign overall for the motion of the cars. In contrast, because all the terms in the LTB

model consist of products of quantities associated with the same car j, as seen in Table 4, examination of the necessary

condition for DW40 for the LTB model is more straightforward. This is an essential difference between the LEB and

LTB systems. The full appreciation of the significance of these results will be gained in the next section.
6. Modal shapes

In the previous section, the conditio

ns for positive work in the LTB and LEB models were derived analytically and are listed in Table 4. In this section,

some modal shapes of the system obtained by numerical computations will be illustrated for a period of oscillation T.

They are compared with the corresponding motions in Table 4. In addition, time histories of displacement, angle, and

the corresponding velocities, and their products for the cars of clamped–free and free–free LTB models at four different

times in a period of oscillation (t ¼ 0, T=4, T=2, 3T=4, and T) are given.

6.1. Clamped-free system

Here, the modal shapes of the clamped–free LEB model are analysed by applying the present numerical computation

for the LTB model subject to the conditions J ! 0 and kZ !1. Recall that the equations of motion of the LTB model

are identical to those of the LEB one if J ! 0 and kZ !1, as shown in Section 3.2.
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Table 4

Conditions for positive work done on the systems of clamped–free LEB and free–free LTB models

Model Term Sign U Condition Motion

LEB mf � U
PN
j¼1

PN
k¼jþ1

_yk
_yjo0

þ U
PN
j¼1

Pj�1
k¼1

_yk
_yj40

þ U
PN
j¼1

_yj
2
40 Always positive

cN � U
PN
j¼1

PN
k¼jþ1

_yk
_yjo0

� U
PN
j¼1

Pj�1
k¼1

_yk
_yjo0

� U
PN
j¼1

PN
i¼jþ1

Pi�1
k¼1

_yk
_yjo0

cT � cN þa
U2

PN
j¼1

PN
k¼jþ1

yk
_yj40

1� f t � U
PN
j¼1

PN
k¼1

_yk
_yjo0

� U2
PN
j¼1

_yjyNo0

LTB 1� f n
þ u _a1 _yc140

� u2 a1 _yc1o0

CT �CN þb u2
PN
j¼1

aj _ycj40

1� f t � u _aN _ycNo0

� u2 aN _ycNo0

The overbar means integration over the period of oscillation T.
aIf cT4cN .
bIf CT4CN .
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It was shown that the stability of clamped–free cylinders subjected to axial flow depends strongly on the parameter f t

(Paı̈doussis, 1966a, 1973). Thus, we shall focus on examining the modal shape associated with the nonconservative

inviscid force involving f t. The condition for positive work done by the fluid (aN _ycNo0) and the corresponding motion

are shown at the bottom of Table 4. Because the nonconservative inviscid force acts only on the tapered end of the

trailing car, Car N, the condition includes only the angle and the translational velocity of Car N, aN and _ycN . When the

product of angle and translational velocity, aN _ycN , takes a negative value over a period of oscillation, the fluid does

work on the system. It is recalled that if the stiffnesses of translational springs between cars in the LTB model are

sufficiently large, the LTB model may be considered as an LEB model, because the relative translational displacements
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between two adjacent cars become infinitesimal. In this case, we have
PN

j¼1cj
_yj ’ _ycN . Then, letting yN ¼ aN , the

condition of
PN

j¼1
_yjyNo0 for the LEB model can be considered to be the same as aN _ycNo0 for the LTB model.

The condition of aN _ycNo0 can physically be explained as follows. If the tail of the trailing car keeps a downward

slope (aNo0) and the car moves upward ( _ycN40) at the same time, as illustrated at the bottom figure of Table 4,

the trailing car gains energy from the fluid; here ‘‘downward’’ and ‘‘upward’’ refer to the diagrams in the table, not to

the train itself.

Modal shapes of second-mode unstable oscillation of a train of six cars over a period of oscillation,

t ¼ 0;T=4;T=2; 3T=4;T , are illustrated in Fig. 8(b); they have been obtained numerically. The dimensional flow

velocity is set at U ’ 4:49 m/s, where the second mode loses stability by flutter. The overall modal constant in Fig. 8(b)

may be considered to be a synthesis of first and second cantilever mode contributions. This motion can be called a

‘‘dragging motion’’, that is, the tangent to the free end of the model slopes backwards to the direction of motion of the

free end over the greater part of a cycle of oscillation. This dragging motion is predicted to be necessary for flutter, in

conjunction with the energy considerations just discussed.

Fig. 8(c) illustrates the time histories of displacement, angle, the corresponding velocities, and their products (aN _ycN

and _aN _ycN ) for the trailing car (N ¼ 6) of the clamped–free LTB model over a period of oscillation T. All the

displacements and velocities tend to oscillate sinusoidally in time. However, in the bottom graph of Fig. 8(c), the

product of angle and translational velocity (a6 _yc6) is seen to be almost always negative over a period of oscillation.

Hence, the condition of a6 _yc6 ¼
R T

0 a6 _yc6 dto0 is clearly satisfied.

Note that the curve of the time history of a6 _yc6 has negative peaks in the quarter periods from T=4 to T=2 and from

3T=4 to T. The absolute values of the peaks increase with increasing time because of the flutter instability, that is, the

work done by the fluid increases gradually. During these periods, as seen in Fig. 8(b), the train of cars moves from one

side to the other across the centreline. If we compare the modal shapes at t ¼ 0 and t ¼ T in Fig. 8(b), it is seen that the

translational displacement of all the cars is amplified after a period of T. On the other hand, the amplitude of _a6 _yc6 at

the bottom graph of Fig. 8(c) (dotted line) is quite small (actually, _a6 _yc6 ’ 0) in comparison with that of a6 _yc6. Hence,

the effect of the term _a6 _yc6, which is proportional to U in the f t term, may be neglected.

6.2. Free–free system with elastic supports

Recall that the dynamical behaviour of the train of free–free cars with elastic supports, whose configuration

represents a simplified actual train, is given in Fig. 6(a). In this subsection, the system parameters employed are the

same as those in Table 2, except for the number of cars N and the streamlining coefficient f t. For the sake of clarity, the

number of cars is set at N ¼ 3, because a train of three cars is the simplest system with a middle car. Because the viscous

frictional coefficients CT and CN have a considerable effect on the stability of the train as shown in Section 4, the

streamlining coefficients are set at f t ¼ 1:0 (and f n ¼ 1:0) in order to examine the viscous frictional forces only. In this

case, only the term ð2mu2=pÞðCT � CN Þ
PN

j¼1lj

R T

0
aj _ycj dt remains in Eq. (45). As explained in Section 4, the system

becomes unstable by flutter for sufficiently high flow velocities provided that CTX1:3CN , even though only the viscous

force does positive work on the system. Consequently, we shall examine the modal shape for the effect of the viscous

forces associated with CT and CN .

The condition for positive work done by the fluid ð
PN

j¼1aj _ycj40Þ and the corresponding motion are shown near the

bottom of Table 4 in the row of ‘‘CT � CN .’’ As explained in Section 5.3, the work expression does not include the

multiplication of variables of different cars; the corresponding motion may be examined for each car. If _y�cj and aj have

the same sign (or
R T

0
_y�cjaj dt40), then the term with CT4CN is positive and with CToCN negative; hence if CT4CN ,

the viscous forces do positive work on the system, but if CToCN , they do negative work (hence they do not

contribute to instability). That evidently explains the necessary (but not sufficient) condition for instability of CT4CN

obtained earlier.

Modal shapes of Mode 1 over a period of oscillation are illustrated in Fig. 9(a). The dimensionless flow velocity u is

set at 10, where the first three modes have lost stability by flutter. If we examine the motion of each car, the condition ofR T

0 aj _ycj dt40 seems to be generally satisfied. To analyse the motion of the cars more clearly, time histories of

displacement, angle, the corresponding velocities, and their products for the trailing car, Car 3, of the free–free LTB

model with elastic supports over a period of oscillation T, are shown in Fig. 9(b). All the displacements and velocities

tend to oscillate sinusoidally in time. On the other hand, in the bottom graph of Fig. 9(b), the product of angle and

translational velocity (a3 _yc3) is almost always positive over a period of oscillation. Hence, the condition of a3 _yc3 ¼R T

0 a3 _yc3 dt40 is clearly satisfied.

If we compare the modal shapes at t ¼ 0 and T in Fig. 9(a), the translational displacement of all the cars is

almost the same after a period T. On the other hand, the amplitude of _a3 _yc3 oscillates symmetrically with respect
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to the zero reference line. Hence, no contribution to the work related to the _a3 _yc3 term can be expected over a period of

oscillation.

In the same manner, we can examine the amplitudes of a1 _yc1 and a2 _yc2. Fig. 9(c) shows the time histories of the

product of the angle and the translational velocity of Cars 1–3 over a period of oscillation T. The curve of Car 3 in

Fig. 9(c) is the same as the solid line at the bottom of Fig. 9(b). The time histories show that Cars 1 and 2 oscillate like

Car 3. These cars have the same period of oscillation, but there is a phase difference in their motions. All the curves

clearly satisfy the condition of
R T

0
_y�cjaj dt40. Thus, it is confirmed that the frictional viscous term with CT4CN has a

considerable effect on the instability of the present system of a simplified model of an actual train.

7. Conclusions

The dynamical stability of a train of flexibly interconnected rigid cylindrical cars with elastic supports subjected to

fluid dynamic forces simulating motion in a tunnel has been studied theoretically. The principal aim of this study was to

investigate the dynamics of a high-speed train running in a tunnel, or more generally of a train-like articulated system

travelling in confined fluid. The system can be treated as a lumped-parameter Timoshenko-beam (LTB) model on

elastic supports, which can replicate the dynamical behaviour of an Euler–Bernoulli beam under certain conditions. The

typical dynamical behaviour of the LTB model is found to be as follows: small flow velocities act to damp free

oscillation of the system; as the flow velocity increases, the system becomes unstable by flutter in the lower modes.

The effect of varying the principal parameters on the dynamics of the train system of the LTB model was evaluated

by calculating the critical velocities and the percentage differences with respect to a set of standard parameters. It was
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Fig. 9. (a) Modal shapes of the lowest eigenmode of LTB system over a period of oscillation, t ¼ 0;T=4;T=2; 3T=4;T (N ¼ 3, f t ¼ 1,

CN ¼ CT=2, u ¼ 10). (b) Time histories of displacement, angle, the corresponding velocities, and their products for the trailing car, Car

3, of the free–free LTB model with elastic supports over a period of oscillation T (N ¼ 3, f t ¼ 1, CN ¼ CT=2, u ¼ 10). (c) Time

histories of the product of angle and translational velocity of Cars 1–3 of the free–free LTB model with elastic supports over a period of

oscillation T (N ¼ 3, f t ¼ 1, CN ¼ CT=2, u ¼ 10).
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shown that, among the aerodynamic system parameters, the ratio between viscous frictional drag coefficients in the

normal and longitudinal directions, CN=CT , has a considerable effect on the stability of the train.

The mechanism of instability of the Lumped-parameter Timoshenko Beam (LTB) and Euler–Bernoulli Beam (LEB)

models and the differences associated with these models have been studied by examining the equations of motion, the

work done by the fluid, and the modal shapes for the two models. The conditions for positive work done by the fluid for

the LTB and LEB models were derived analytically and discussed. An essential difference in the conditions for positive

work to be done on the systems for the clamped–free LEB and free–free LTB models is the following: for the LEB

model, the motion of all the cylinders (cars) has to be considered simultaneously, because the work done for the LEB

model involves terms with products of different cylinder motions; conversely, for the LTB model, the work done by

each cylinder can be considered separately.

In Part 2 of this study (Sakuma et al., 2008) wave propagation and flow-excited vibration of the LTB model will be

studied.
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